Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/staking/PendlePT_sUSDe.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.29;
import { PendlePT, PendleRedeemParams } from "./PendlePT.sol";
import { sUSDe, sDAI, DAI } from "../interfaces/IEthena.sol";
import { IWithdrawRequestManager } from "../interfaces/IWithdrawRequestManager.sol";
import { Trade, TradeType, DexId, CurveV2SingleData } from "../interfaces/ITradingModule.sol";
import { SlippageTooHigh } from "../interfaces/Errors.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
contract PendlePT_sUSDe is PendlePT {
using SafeERC20 for ERC20;
constructor(
address market,
address tokenInSY,
address tokenOutSY,
address asset,
address yieldToken,
uint256 feeRate,
IWithdrawRequestManager withdrawRequestManager
)
PendlePT(market, tokenInSY, tokenOutSY, asset, yieldToken, feeRate, withdrawRequestManager)
{
require(tokenOutSY == address(sUSDe));
}
/// @notice The vast majority of the sUSDe liquidity is in an sDAI/sUSDe curve pool.
/// sDAI has much greater liquidity once it is unwrapped as DAI so that is done manually
/// in this method.
function _executeInstantRedemption(
uint256 yieldTokensToRedeem,
bytes memory redeemData
)
internal
virtual
override
returns (uint256 assetsPurchased)
{
PendleRedeemParams memory params = abi.decode(redeemData, (PendleRedeemParams));
uint256 netTokenOut = _redeemPT(yieldTokensToRedeem, params.limitOrderData);
Trade memory sDAITrade = Trade({
tradeType: TradeType.EXACT_IN_SINGLE,
sellToken: address(sUSDe),
buyToken: address(sDAI),
amount: netTokenOut,
limit: 0, // NOTE: no slippage guard is set here, it is enforced in the second leg
// of the trade.
deadline: block.timestamp,
exchangeData: abi.encode(
CurveV2SingleData({
pool: 0x167478921b907422F8E88B43C4Af2B8BEa278d3A,
fromIndex: 1, // sUSDe
toIndex: 0 // sDAI
})
)
});
( /* */ , uint256 sDAIAmount) = _executeTrade(sDAITrade, uint16(DexId.CURVE_V2));
// Unwraps the sDAI to DAI
uint256 daiAmount = sDAI.redeem(sDAIAmount, address(this), address(this));
emit TradeExecuted(address(sDAI), address(DAI), sDAIAmount, daiAmount);
if (asset != address(DAI)) {
Trade memory trade = Trade({
tradeType: TradeType.EXACT_IN_SINGLE,
sellToken: address(DAI),
buyToken: asset,
amount: daiAmount,
limit: params.minPurchaseAmount,
deadline: block.timestamp,
exchangeData: params.exchangeData
});
// Trades the unwrapped DAI back to the given token.
( /* */ , assetsPurchased) = _executeTrade(trade, params.dexId);
} else {
if (params.minPurchaseAmount > daiAmount) revert SlippageTooHigh(daiAmount, params.minPurchaseAmount);
assetsPurchased = daiAmount;
}
}
}
"
},
"src/staking/PendlePT.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.29;
import { AbstractStakingStrategy } from "./AbstractStakingStrategy.sol";
import { IPMarket, IStandardizedYield, IPPrincipalToken, IPYieldToken } from "../interfaces/IPendle.sol";
import { IWithdrawRequestManager } from "../interfaces/IWithdrawRequestManager.sol";
import { Trade, TradeType } from "../interfaces/ITradingModule.sol";
import { SlippageTooHigh } from "../interfaces/Errors.sol";
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { PendlePTLib } from "./PendlePTLib.sol";
import { TokenUtils } from "../utils/TokenUtils.sol";
struct PendleDepositParams {
uint16 dexId;
uint256 minPurchaseAmount;
bytes exchangeData;
bytes pendleData;
}
struct PendleRedeemParams {
uint8 dexId;
uint256 minPurchaseAmount;
bytes exchangeData;
bytes limitOrderData;
}
/**
* Base implementation for Pendle PT vaults
*/
contract PendlePT is AbstractStakingStrategy {
using TokenUtils for ERC20;
IPMarket public immutable MARKET;
address public immutable TOKEN_OUT_SY;
address public immutable TOKEN_IN_SY;
IStandardizedYield public immutable SY;
IPPrincipalToken public immutable PT;
IPYieldToken public immutable YT;
constructor(
address market,
address tokenInSY,
address tokenOutSY,
address asset,
address yieldToken,
uint256 feeRate,
IWithdrawRequestManager withdrawRequestManager
)
AbstractStakingStrategy(asset, yieldToken, feeRate, withdrawRequestManager)
{
MARKET = IPMarket(market);
(address sy, address pt, address yt) = MARKET.readTokens();
SY = IStandardizedYield(sy);
PT = IPPrincipalToken(pt);
YT = IPYieldToken(yt);
require(address(PT) == yieldToken);
require(SY.isValidTokenIn(tokenInSY));
// This may not be the same as valid token in, for LRT you can
// put ETH in but you would only get weETH or eETH out
require(SY.isValidTokenOut(tokenOutSY));
TOKEN_IN_SY = tokenInSY;
TOKEN_OUT_SY = tokenOutSY;
if (address(withdrawRequestManager) == address(0)) {
// If no withdraw request manager is set then use the token in sy
// as the accounting asset.
accountingAsset = tokenInSY;
}
}
function strategy() public pure override returns (string memory) {
return "PendlePT";
}
function _mintYieldTokens(uint256 assets, address, /* receiver */ bytes memory data) internal override {
require(!PT.isExpired(), "Expired");
PendleDepositParams memory params = abi.decode(data, (PendleDepositParams));
uint256 tokenInAmount;
if (TOKEN_IN_SY != asset) {
Trade memory trade = Trade({
tradeType: TradeType.EXACT_IN_SINGLE,
sellToken: asset,
buyToken: TOKEN_IN_SY,
amount: assets,
limit: params.minPurchaseAmount,
deadline: block.timestamp,
exchangeData: params.exchangeData
});
// Executes a trade on the given Dex, the vault must have permissions set for
// each dex and token it wants to sell.
( /* */ , tokenInAmount) = _executeTrade(trade, params.dexId);
} else {
tokenInAmount = assets;
}
PendlePTLib.swapExactTokenForPt(TOKEN_IN_SY, address(MARKET), address(PT), tokenInAmount, params.pendleData);
}
/// @notice Handles PT redemption whether it is expired or not
function _redeemPT(uint256 netPtIn, bytes memory limitOrderData) internal returns (uint256 netTokenOut) {
if (PT.isExpired()) {
netTokenOut = PendlePTLib.redeemExpiredPT(PT, YT, SY, TOKEN_OUT_SY, netPtIn);
} else {
netTokenOut =
PendlePTLib.swapExactPtForToken(address(PT), address(MARKET), TOKEN_OUT_SY, netPtIn, limitOrderData);
}
}
function _executeInstantRedemption(
uint256 yieldTokensToRedeem,
bytes memory redeemData
)
internal
virtual
override
returns (uint256 assetsPurchased)
{
PendleRedeemParams memory params = abi.decode(redeemData, (PendleRedeemParams));
uint256 netTokenOut = _redeemPT(yieldTokensToRedeem, params.limitOrderData);
if (TOKEN_OUT_SY != asset) {
Trade memory trade = Trade({
tradeType: TradeType.EXACT_IN_SINGLE,
sellToken: TOKEN_OUT_SY,
buyToken: asset,
amount: netTokenOut,
limit: params.minPurchaseAmount,
deadline: block.timestamp,
exchangeData: params.exchangeData
});
// Executes a trade on the given Dex, the vault must have permissions set for
// each dex and token it wants to sell.
( /* */ , assetsPurchased) = _executeTrade(trade, params.dexId);
} else {
if (params.minPurchaseAmount > netTokenOut) revert SlippageTooHigh(netTokenOut, params.minPurchaseAmount);
assetsPurchased = netTokenOut;
}
}
function _initiateWithdraw(
address account,
uint256 ptAmount,
uint256 sharesHeld,
bytes memory data,
address forceWithdrawFrom
)
internal
override
returns (uint256 requestId)
{
// Withdraws can only be initiated for expired PTs
require(PT.isExpired(), "Cannot initiate withdraw for non-expired PTs");
// When doing a direct withdraw for PTs, we first redeem the expired PT
// and then initiate a withdraw on the TOKEN_OUT_SY. Since the vault shares are
// stored in PT terms, we pass tokenOutSy terms (i.e. weETH or sUSDe) to the withdraw
// implementation.
uint256 tokenOutSy = _redeemPT(ptAmount, bytes(""));
ERC20(TOKEN_OUT_SY).checkApprove(address(withdrawRequestManager), tokenOutSy);
return withdrawRequestManager.initiateWithdraw({
account: account,
yieldTokenAmount: tokenOutSy,
sharesAmount: sharesHeld,
data: data,
forceWithdrawFrom: forceWithdrawFrom
});
}
}
"
},
"src/interfaces/IEthena.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.29;
import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
// Mainnet Ethena contract addresses
IsUSDe constant sUSDe = IsUSDe(0x9D39A5DE30e57443BfF2A8307A4256c8797A3497);
ERC20 constant USDe = ERC20(0x4c9EDD5852cd905f086C759E8383e09bff1E68B3);
// Dai and sDAI are required for trading out of sUSDe
ERC20 constant DAI = ERC20(0x6B175474E89094C44Da98b954EedeAC495271d0F);
IERC4626 constant sDAI = IERC4626(0x83F20F44975D03b1b09e64809B757c47f942BEeA);
interface IsUSDe is IERC4626 {
struct UserCooldown {
uint104 cooldownEnd;
uint152 underlyingAmount;
}
function cooldownDuration() external view returns (uint24);
function cooldowns(address account) external view returns (UserCooldown memory);
function cooldownShares(uint256 shares) external returns (uint256 assets);
function unstake(address receiver) external;
function setCooldownDuration(uint24 duration) external;
function owner() external view returns (address);
}
"
},
"src/interfaces/IWithdrawRequestManager.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.29;
import { TradeType } from "./ITradingModule.sol";
/// Each withdraw request manager contract is responsible for managing withdraws of a token
/// from a specific token (i.e. wstETH, weETH, sUSDe, etc). Each yield strategy can call the
/// appropriate withdraw request manager to initiate a withdraw of a given yield token.
struct StakingTradeParams {
TradeType tradeType;
uint256 minPurchaseAmount;
bytes exchangeData;
uint16 dexId;
bytes stakeData;
}
struct WithdrawRequest {
uint256 requestId;
uint120 yieldTokenAmount;
uint120 sharesAmount;
}
struct TokenizedWithdrawRequest {
uint120 totalYieldTokenAmount;
uint120 totalWithdraw;
bool finalized;
}
interface IWithdrawRequestManager {
event ApprovedVault(address indexed vault, bool indexed isApproved);
event InitiateWithdrawRequest(
address indexed account,
address indexed vault,
uint256 yieldTokenAmount,
uint256 sharesAmount,
uint256 requestId
);
event WithdrawRequestTokenized(
address indexed from, address indexed to, address indexed vault, uint256 requestId, uint256 sharesAmount
);
event WithdrawRequestFinalized(
address indexed vault, address indexed account, uint256 requestId, uint256 totalWithdraw
);
event WithdrawRequestRedeemed(
address indexed vault,
address indexed account,
uint256 requestId,
uint256 withdrawYieldTokenAmount,
uint256 sharesBurned,
bool isCleared
);
/// @notice Returns the token that will be the result of staking
/// @return yieldToken the yield token of the withdraw request manager
function YIELD_TOKEN() external view returns (address);
/// @notice Returns the token that will be the result of the withdraw request
/// @return withdrawToken the withdraw token of the withdraw request manager
function WITHDRAW_TOKEN() external view returns (address);
/// @notice Returns the token that will be used to stake
/// @return stakingToken the staking token of the withdraw request manager
function STAKING_TOKEN() external view returns (address);
/// @notice Returns whether a vault is approved to initiate withdraw requests
/// @param vault the vault to check the approval for
/// @return isApproved whether the vault is approved
function isApprovedVault(address vault) external view returns (bool);
/// @notice Returns whether a vault has a pending withdraw request
/// @param vault the vault to check the pending withdraw request for
/// @param account the account to check the pending withdraw request for
/// @return isPending whether the vault has a pending withdraw request
function isPendingWithdrawRequest(address vault, address account) external view returns (bool);
/// @notice Sets whether a vault is approved to initiate withdraw requests
/// @param vault the vault to set the approval for
/// @param isApproved whether the vault is approved
function setApprovedVault(address vault, bool isApproved) external;
/// @notice Stakes the deposit token to the yield token and transfers it back to the vault
/// @dev Only approved vaults can stake tokens
/// @param depositToken the token to stake, will be transferred from the vault
/// @param amount the amount of tokens to stake
/// @param data additional data for the stake
function stakeTokens(
address depositToken,
uint256 amount,
bytes calldata data
)
external
returns (uint256 yieldTokensMinted);
/// @notice Initiates a withdraw request
/// @dev Only approved vaults can initiate withdraw requests
/// @param account the account to initiate the withdraw request for
/// @param yieldTokenAmount the amount of yield tokens to withdraw
/// @param sharesAmount the amount of shares to withdraw, used to mark the shares to
/// yield token ratio at the time of the withdraw request
/// @param data additional data for the withdraw request
/// @return requestId the request id of the withdraw request
function initiateWithdraw(
address account,
uint256 yieldTokenAmount,
uint256 sharesAmount,
bytes calldata data,
address forceWithdrawFrom
)
external
returns (uint256 requestId);
/// @notice Attempts to redeem active withdraw requests during vault exit
/// @dev Will revert if the withdraw request is not finalized
/// @param account the account to finalize and redeem the withdraw request for
/// @param withdrawYieldTokenAmount the amount of yield tokens to withdraw
/// @param sharesToBurn the amount of shares to burn for the yield token
/// @return tokensWithdrawn amount of withdraw tokens redeemed from the withdraw requests
function finalizeAndRedeemWithdrawRequest(
address account,
uint256 withdrawYieldTokenAmount,
uint256 sharesToBurn
)
external
returns (uint256 tokensWithdrawn);
/// @notice Finalizes withdraw requests outside of a vault exit. This may be required in cases if an
/// account is negligent in exiting their vault position and letting the withdraw request sit idle
/// could result in losses. The withdraw request is finalized and stored in a tokenized withdraw request
/// where the account has the full claim on the withdraw.
/// @dev No access control is enforced on this function but no tokens are transferred off the request
/// manager either.
/// @dev Will revert if the withdraw request is not finalized
function finalizeRequestManual(address vault, address account) external returns (uint256 tokensWithdrawn);
/// @notice If an account has an illiquid withdraw request, this method will tokenize their
/// claim on it during liquidation.
/// @dev Only approved vaults can tokenize withdraw requests
/// @param from the account that is being liquidated
/// @param to the liquidator
/// @param sharesAmount the amount of shares to the liquidator
function tokenizeWithdrawRequest(
address from,
address to,
uint256 sharesAmount
)
external
returns (bool didTokenize);
/// @notice Allows the emergency exit role to rescue tokens from the withdraw request manager
/// @param cooldownHolder the cooldown holder to rescue tokens from
/// @param token the token to rescue
/// @param receiver the receiver of the rescued tokens
/// @param amount the amount of tokens to rescue
function rescueTokens(address cooldownHolder, address token, address receiver, uint256 amount) external;
/// @notice Returns whether a withdraw request can be finalized, only used off chain
/// to determine if a withdraw request can be finalized.
/// @param requestId the request id of the withdraw request
/// @return canFinalize whether the withdraw request can be finalized
function canFinalizeWithdrawRequest(uint256 requestId) external view returns (bool);
/// @notice Returns the withdraw request and tokenized withdraw request for an account
/// @param vault the vault to get the withdraw request for
/// @param account the account to get the withdraw request for
/// @return w the withdraw request
/// @return s the tokenized withdraw request
function getWithdrawRequest(
address vault,
address account
)
external
view
returns (WithdrawRequest memory w, TokenizedWithdrawRequest memory s);
/// @notice Returns the value of a withdraw request in terms of the asset
/// @param vault the vault to get the withdraw request for
/// @param account the account to get the withdraw request for
/// @param asset the asset to get the value for
/// @param shares the amount of shares to get the value for
/// @return hasRequest whether the account has a withdraw request
/// @return value the value of the withdraw request in terms of the asset
function getWithdrawRequestValue(
address vault,
address account,
address asset,
uint256 shares
)
external
view
returns (bool hasRequest, uint256 value);
/// @notice Returns the protocol reported exchange rate between the yield token
/// and then withdraw token.
/// @return exchangeRate the exchange rate of the yield token to the withdraw token
function getExchangeRate() external view returns (uint256 exchangeRate);
/// @notice Returns the known amount of withdraw tokens for a withdraw request
/// @param requestId the request id of the withdraw request
/// @return hasKnownAmount whether the amount is known
/// @return amount the amount of withdraw tokens
function getKnownWithdrawTokenAmount(uint256 requestId)
external
view
returns (bool hasKnownAmount, uint256 amount);
}
"
},
"src/interfaces/ITradingModule.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity >=0.8.28;
import { AggregatorV2V3Interface } from "./AggregatorV2V3Interface.sol";
enum DexId {
_UNUSED, // flag = 1, enum = 0
UNISWAP_V2, // flag = 2, enum = 1
UNISWAP_V3, // flag = 4, enum = 2
ZERO_EX, // flag = 8, enum = 3
BALANCER_V2, // flag = 16, enum = 4
// NOTE: this id is unused in the TradingModule
CURVE, // flag = 32, enum = 5
NOTIONAL_VAULT, // flag = 64, enum = 6
CURVE_V2, // flag = 128, enum = 7
CAMELOT_V3 // flag = 256, enum = 8
}
enum TradeType {
EXACT_IN_SINGLE, // flag = 1
EXACT_OUT_SINGLE, // flag = 2
EXACT_IN_BATCH, // flag = 4
EXACT_OUT_BATCH, // flag = 8
STAKE_TOKEN // flag = 16
}
struct UniV3SingleData {
uint24 fee;
}
// Path is packed encoding `token, fee, token, fee, outToken`
struct UniV3BatchData {
bytes path;
}
struct CurveV2SingleData {
// Address of the pool to use for the swap
address pool;
int128 fromIndex;
int128 toIndex;
}
struct CurveV2BatchData {
// Array of [initial token, pool, token, pool, token, ...]
// The array is iterated until a pool address of 0x00, then the last
// given token is transferred to `_receiver`
address[9] route;
// Multidimensional array of [i, j, swap type] where i and j are the correct
// values for the n'th pool in `_route`. The swap type should be
// 1 for a stableswap `exchange`,
// 2 for stableswap `exchange_underlying`,
// 3 for a cryptoswap `exchange`,
// 4 for a cryptoswap `exchange_underlying`,
// 5 for factory metapools with lending base pool `exchange_underlying`,
// 6 for factory crypto-meta pools underlying exchange (`exchange` method in zap),
// 7-11 for wrapped coin (underlying for lending or fake pool) -> LP token "exchange" (actually `add_liquidity`),
// 12-14 for LP token -> wrapped coin (underlying for lending pool) "exchange" (actually
// `remove_liquidity_one_coin`)
// 15 for WETH -> ETH "exchange" (actually deposit/withdraw)
uint256[3][4] swapParams;
}
struct Trade {
TradeType tradeType;
address sellToken;
address buyToken;
uint256 amount;
/// minBuyAmount or maxSellAmount
uint256 limit;
uint256 deadline;
bytes exchangeData;
}
error InvalidTrade();
error DynamicTradeFailed();
error TradeFailed();
interface nProxy {
function getImplementation() external view returns (address);
}
interface ITradingModule {
struct TokenPermissions {
bool allowSell;
/// @notice allowed DEXes
uint32 dexFlags;
/// @notice allowed trade types
uint32 tradeTypeFlags;
}
event TradeExecuted(address indexed sellToken, address indexed buyToken, uint256 sellAmount, uint256 buyAmount);
event PriceOracleUpdated(address token, address oracle);
event MaxOracleFreshnessUpdated(uint32 currentValue, uint32 newValue);
event TokenPermissionsUpdated(address sender, address token, TokenPermissions permissions);
function tokenWhitelist(
address spender,
address token
)
external
view
returns (bool allowSell, uint32 dexFlags, uint32 tradeTypeFlags);
function priceOracles(address token) external view returns (AggregatorV2V3Interface oracle, uint8 rateDecimals);
function getExecutionData(
uint16 dexId,
address from,
Trade calldata trade
)
external
view
returns (address spender, address target, uint256 value, bytes memory params);
function setMaxOracleFreshness(uint32 newMaxOracleFreshnessInSeconds) external;
function setPriceOracle(address token, AggregatorV2V3Interface oracle) external;
function setTokenPermissions(address sender, address token, TokenPermissions calldata permissions) external;
function getOraclePrice(address inToken, address outToken) external view returns (int256 answer, int256 decimals);
function executeTrade(
uint16 dexId,
Trade calldata trade
)
external
payable
returns (uint256 amountSold, uint256 amountBought);
function executeTradeWithDynamicSlippage(
uint16 dexId,
Trade memory trade,
uint32 dynamicSlippageLimit
)
external
payable
returns (uint256 amountSold, uint256 amountBought);
function getLimitAmount(
address from,
TradeType tradeType,
address sellToken,
address buyToken,
uint256 amount,
uint32 slippageLimit
)
external
view
returns (uint256 limitAmount);
function canExecuteTrade(address from, uint16 dexId, Trade calldata trade) external view returns (bool);
}
ITradingModule constant TRADING_MODULE = ITradingModule(0x594734c7e06C3D483466ADBCe401C6Bd269746C8);
"
},
"src/interfaces/Errors.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.28;
error NotAuthorized(address operator, address user);
error Unauthorized(address caller);
error UnauthorizedLendingMarketTransfer(address from, address to, uint256 value);
error InsufficientYieldTokenBalance();
error InsufficientAssetsForRepayment(uint256 assetsToRepay, uint256 assetsWithdrawn);
error CannotLiquidate(uint256 maxLiquidateShares, uint256 seizedAssets);
error CannotLiquidateZeroShares();
error Paused();
error CannotExitPositionWithinCooldownPeriod();
error CannotTokenizeWithdrawRequest();
error CurrentAccountAlreadySet();
error InvalidVault(address vault);
error WithdrawRequestNotFinalized(uint256 requestId);
error CannotInitiateWithdraw(address account);
error CannotForceWithdraw(address account);
error InsufficientSharesHeld();
error SlippageTooHigh(uint256 actualTokensOut, uint256 minTokensOut);
error CannotEnterPosition();
error NoExistingPosition();
error LiquidatorHasPosition();
error InvalidUpgrade();
error InvalidInitialization();
error InvalidLendingRouter();
error ExistingWithdrawRequest(address vault, address account, uint256 requestId);
error NoWithdrawRequest(address vault, address account);
error InvalidWithdrawRequestTokenization();
error InvalidPrice(uint256 oraclePrice, uint256 spotPrice);
error PoolShareTooHigh(uint256 poolClaim, uint256 maxSupplyThreshold);
error AssetRemaining(uint256 assetRemaining);
"
},
"node_modules/@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}
"
},
"node_modules/@openzeppelin/contracts/token/ERC20/ERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
"
},
"src/staking/AbstractStakingStrategy.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.29;
import { AbstractYieldStrategy } from "../AbstractYieldStrategy.sol";
import { IWithdrawRequestManager, WithdrawRequest } from "../interfaces/IWithdrawRequestManager.sol";
import { Trade, TradeType } from "../interfaces/ITradingModule.sol";
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { TokenUtils } from "../utils/TokenUtils.sol";
struct RedeemParams {
uint8 dexId;
uint256 minPurchaseAmount;
bytes exchangeData;
}
struct DepositParams {
uint8 dexId;
uint256 minPurchaseAmount;
bytes exchangeData;
}
/**
* Supports vaults that borrow a token and stake it into a token that earns yield but may
* require some illiquid redemption period.
*/
abstract contract AbstractStakingStrategy is AbstractYieldStrategy {
using TokenUtils for ERC20;
address internal immutable withdrawToken;
constructor(
address _asset,
address _yieldToken,
uint256 _feeRate,
IWithdrawRequestManager _withdrawRequestManager
)
AbstractYieldStrategy(_asset, _yieldToken, _feeRate, ERC20(_yieldToken).decimals())
{
// For Pendle PT the yield token does not define the withdraw request manager,
// it is the token out sy
withdrawRequestManager = _withdrawRequestManager;
if (address(withdrawRequestManager) != address(0)) {
accountingAsset = withdrawRequestManager.STAKING_TOKEN();
withdrawToken = withdrawRequestManager.WITHDRAW_TOKEN();
} else {
withdrawToken = address(0);
// Accounting asset will be set to the asset itself if no withdraw
// request manager is set. For Pendle PT strategies this will be
// set to the token in sy.
}
}
/// @notice Returns the total value in terms of the borrowed token of the account's position
function convertToAssets(uint256 shares) public view override returns (uint256) {
if (t_CurrentAccount != address(0) && _isWithdrawRequestPending(t_CurrentAccount)) {
(bool hasRequest, uint256 value) =
withdrawRequestManager.getWithdrawRequestValue(address(this), t_CurrentAccount, asset, shares);
// If the account does not have a withdraw request then this will fall through
// to the super implementation.
if (hasRequest) return value;
}
return super.convertToAssets(shares);
}
function _initiateWithdraw(
address account,
uint256 yieldTokenAmount,
uint256 sharesHeld,
bytes memory data,
address forceWithdrawFrom
)
internal
virtual
override
returns (uint256 requestId)
{
ERC20(yieldToken).checkApprove(address(withdrawRequestManager), yieldTokenAmount);
requestId = withdrawRequestManager.initiateWithdraw({
account: account,
yieldTokenAmount: yieldTokenAmount,
sharesAmount: sharesHeld,
data: data,
forceWithdrawFrom: forceWithdrawFrom
});
}
/// @dev By default we can use the withdraw request manager to stake the tokens
function _mintYieldTokens(
uint256 assets,
address, /* receiver */
bytes memory depositData
)
internal
virtual
override
{
ERC20(asset).checkApprove(address(withdrawRequestManager), assets);
withdrawRequestManager.stakeTokens(address(asset), assets, depositData);
}
function _redeemShares(
uint256 sharesToRedeem,
address sharesOwner,
bool isEscrowed,
bytes memory redeemData
)
internal
override
{
if (isEscrowed) {
(WithdrawRequest memory w, /* */ ) = withdrawRequestManager.getWithdrawRequest(address(this), sharesOwner);
uint256 yieldTokensBurned = uint256(w.yieldTokenAmount) * sharesToRedeem / w.sharesAmount;
uint256 tokensClaimed = withdrawRequestManager.finalizeAndRedeemWithdrawRequest({
account: sharesOwner,
withdrawYieldTokenAmount: yieldTokensBurned,
sharesToBurn: sharesToRedeem
});
// Trades may be required here if the borrowed token is not the same as what is
// received when redeeming.
if (asset != withdrawToken) {
RedeemParams memory params = abi.decode(redeemData, (RedeemParams));
Trade memory trade = Trade({
tradeType: TradeType.EXACT_IN_SINGLE,
sellToken: address(withdrawToken),
buyToken: address(asset),
amount: tokensClaimed,
limit: params.minPurchaseAmount,
deadline: block.timestamp,
exchangeData: params.exchangeData
});
_executeTrade(trade, params.dexId);
}
} else {
uint256 yieldTokensBurned = convertSharesToYieldToken(sharesToRedeem);
_executeInstantRedemption(yieldTokensBurned, redeemData);
}
}
/// @notice Default implementation for an instant redemption is to sell the staking token to the
/// borrow token through the trading module. Can be overridden if required for different implementations.
function _executeInstantRedemption(
uint256 yieldTokensToRedeem,
bytes memory redeemData
)
internal
virtual
returns (uint256 assetsPurchased)
{
RedeemParams memory params = abi.decode(redeemData, (RedeemParams));
Trade memory trade = Trade({
tradeType: TradeType.EXACT_IN_SINGLE,
sellToken: address(yieldToken),
buyToken: address(asset),
amount: yieldTokensToRedeem,
limit: params.minPurchaseAmount,
deadline: block.timestamp,
exchangeData: params.exchangeData
});
// Executes a trade on the given Dex, the vault must have permissions set for
// each dex and token it wants to sell.
( /* */ , assetsPurchased) = _executeTrade(trade, params.dexId);
}
/* solhint-disable no-empty-blocks */
function _preLiquidation(address, address, uint256, uint256) internal override { /* no-op */ }
/* solhint-enable no-empty-blocks */
function _postLiquidation(
address liquidator,
address liquidateAccount,
uint256 sharesToLiquidator
)
internal
override
returns (bool didTokenize)
{
if (address(withdrawRequestManager) != address(0)) {
// No need to accrue fees because neither the total supply or total yield token balance is changing. If
// there
// is no withdraw request then this will be a noop.
didTokenize =
withdrawRequestManager.tokenizeWithdrawRequest(liquidateAccount, liquidator, sharesToLiquidator);
}
}
}
"
},
"src/interfaces/IPendle.sol": {
"content": "// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.8.28;
import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
event OrderFilledV2(
bytes32 indexed orderHash,
IPRouter.OrderType indexed orderType,
address indexed YT,
address token,
uint256 netInputFromMaker,
uint256 netOutputToMaker,
uint256 feeAmount,
uint256 notionalVolume,
address maker,
address taker
);
interface IPOracle {
function getPtToAssetRate(address market, uint32 duration) external view returns (uint256);
function getPtToSyRate(address market, uint32 duration) external view returns (uint256);
function getOracleState(
address market,
uint32 duration
)
external
view
returns (bool increaseCardinalityRequired, uint16 cardinalityRequired, bool oldestObservationSatisfied);
}
interface IPRouter {
struct SwapData {
SwapType swapType;
address extRouter;
bytes extCalldata;
bool needScale;
}
enum SwapType {
NONE,
KYBERSWAP,
ONE_INCH,
// ETH_WETH not used in Aggregator
ETH_WETH
}
struct TokenInput {
// TOKEN DATA
address tokenIn;
uint256 netTokenIn;
address tokenMintSy;
// AGGREGATOR DATA
address pendleSwap;
SwapData swapData;
}
struct TokenOutput {
// TOKEN DATA
address tokenOut;
uint256 minTokenOut;
address tokenRedeemSy;
// AGGREGATOR DATA
address pendleSwap;
SwapData swapData;
}
struct LimitOrderData {
address limitRouter;
uint256 epsSkipMarket; // only used for swap operations, will be ignored otherwise
FillOrderParams[] normalFills;
FillOrderParams[] flashFills;
bytes optData;
}
enum OrderType {
SY_FOR_PT,
PT_FOR_SY,
SY_FOR_YT,
YT_FOR_SY
}
struct Order {
uint256 salt;
uint256 expiry;
uint256 nonce;
OrderType orderType;
address token;
address YT;
address maker;
address receiver;
uint256 makingAmount;
uint256 lnImpliedRate;
uint256 failSafeRate;
bytes permit;
}
struct FillOrderParams {
Order order;
bytes signature;
uint256 makingAmount;
}
struct ApproxParams {
uint256 guessMin;
uint256 guessMax;
uint256 guessOffchain; // pass 0 in to skip this variable
uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2
uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number
// will be set
// to 1e15 (1e18/1000 = 0.1%)
}
function swapExactTokenForPt(
address receiver,
address market,
uint256 minPtOut,
ApproxParams calldata guessPtOut,
TokenInput calldata input,
LimitOrderData calldata limit
)
external
payable
returns (uint256 netPtOut, uint256 netSyFee, uint256 netSyInterm);
function swapExactPtForToken(
address receiver,
address market,
uint256 exactPtIn,
TokenOutput calldata output,
LimitOrderData calldata limit
)
external
returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm);
function redeemPyToToken(
address receiver,
address YT,
uint256 netPyIn,
TokenOutput calldata output
)
external
returns (uint256 netTokenOut, uint256 netSyInterm);
}
interface IPMarket {
function mint(
address receiver,
uint256 netSyDesired,
uint256 netPtDesired
)
external
returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed);
function burn(
address receiverSy,
address receiverPt,
uint256 netLpToBurn
)
external
returns (uint256 netSyOut, uint256 netPtOut);
function swapExactPtForSy(
address receiver,
uint256 exactPtIn,
bytes calldata data
)
external
returns (uint256 netSyOut, uint256 netSyFee);
function swapSyForExactPt(
address receiver,
uint256 exactPtOut,
bytes calldata data
)
external
returns (uint256 netSyIn, uint256 netSyFee);
function redeemRewards(address user) external returns (uint256[] memory);
// function readState(address router) external view returns (MarketState memory market);
function observe(uint32[] memory secondsAgos) external view returns (uint216[] memory lnImpliedRateCumulative);
function increaseObservationsCardinalityNext(uint16 cardinalityNext) external;
function readTokens() external view returns (address _SY, address _PT, address _YT);
function getRewardTokens() external view returns (address[] memory);
function isExpired() external view returns (bool);
function expiry() external view returns (uint256);
function observations(uint256 index)
external
view
returns (uint32 blockTimestamp, uint216 lnImpliedRateCumulative, bool initialized);
function _storage()
external
view
returns (
int128 totalPt,
int128 totalSy,
uint96 lastLnImpliedRate,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext
);
}
interface IStandardizedYield is IERC20Metadata {
/// @dev Emitted when any base tokens is deposited to mint shares
event Deposit(
address indexed caller,
address indexed receiver,
address indexed tokenIn,
uint256 amountDeposited,
uint256 amountSyOut
);
/// @dev Emitted when any shares are redeemed for base tokens
event Redeem(
address indexed caller,
address indexed receiver,
address indexed tokenOut,
uint256 amountSyToRedeem,
uint256 amountTokenOut
);
/// @dev check `assetInfo()` for more information
enum AssetType {
TOKEN,
LIQUIDITY
}
/// @dev Emitted when (`user`) claims their rewards
event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts);
/**
* @notice mints an amount of shares by depositing a base token.
* @param receiver shares recipient address
* @param tokenIn address of the base tokens to mint shares
* @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`)
* @param minSharesOut reverts if amount of shares minted is lower than this
* @return amountSharesOut amount of shares minted
* @dev Emits a {Deposit} event
*
* Requirements:
* - (`tokenIn`) must be a valid base token.
*/
function deposit(
address receiver,
address tokenIn,
uint256 amountTokenToDeposit,
uint256 minSharesOut
)
external
payable
returns (uint256 amountSharesOut);
/**
* @notice redeems an amount of base tokens by burning some shares
* @param receiver recipient address
* @param amountSharesToRedeem amount of shares to be burned
* @param tokenOut address of the base token to be redeemed
* @param minTokenOut reverts if amount of base token redeemed is lower than this
* @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender`
* @return amountTokenOut amount of base tokens redeemed
* @dev Emits a {Redeem} event
*
* Requirements:
* - (`tokenOut`) must be a valid base token.
*/
function redeem(
address receiver,
uint256 amountSharesToRedeem,
address tokenOut,
uint256 minTokenOut,
bool burnFromInternalBalance
)
external
returns (uint256 amountTokenOut);
/**
* @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account
* @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy
* he can mint must be X * exchangeRate / 1e18
* @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication
* & division
*/
function exchangeRate() external view returns (uint256 res);
/**
* @notice claims reward for (`user`)
* @param user the user receiving their rewards
* @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
* @dev
* Emits a `ClaimRewards` event
* See {getRewardTokens} for list of reward tokens
*/
function claimRewards(address user) external returns (uint256[] memory rewardAmounts);
/**
* @notice get the amount of unclaimed rewards for (`user`)
* @param user the user to check for
* @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
*/
function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts);
function rewardIndexesCurrent() external returns (uint256[] memory indexes);
function rewardIndexesStored() external view returns (uint256[] memory indexes);
/**
* @notice returns the list of reward token addresses
*/
function g
Submitted on: 2025-09-27 10:49:44
Comments
Log in to comment.
No comments yet.