Description:
Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/factories/MetaMorphoOracleFactory.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {AccessManagedUpgradeable} from "@openzeppelin/contracts-upgradeable/access/manager/AccessManagedUpgradeable.sol";
import {ERC4626Oracle} from "../oracles/ERC4626Oracle.sol";
import {IMetaMorphoFactory} from "../interfaces/IMetaMorphoFactory.sol";
import {IMetaMorphoOracleFactory} from "../interfaces/IMetaMorphoOracleFactory.sol";
contract MetaMorphoOracleFactory is AccessManagedUpgradeable, IMetaMorphoOracleFactory {
// @custom:storage-location erc7201:makina.storage.MetaMorphoOracleFactory
struct MetaMorphoOracleFactoryStorage {
mapping(address oracle => bool isOracle) _isOracle;
mapping(address factory => bool isFactory) _isMorphoFactory;
}
// keccak256(abi.encode(uint256(keccak256("makina.storage.MetaMorphoOracleFactory")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant MetaMorphoOracleFactoryStorageLocation =
0x8b272443f96f44d511b8bb6ad6efe08c8771f99b7e57f25c3f699349a99dca00;
function _getMetaMorphoOracleFactoryStorage() internal pure returns (MetaMorphoOracleFactoryStorage storage $) {
assembly {
$.slot := MetaMorphoOracleFactoryStorageLocation
}
}
constructor() {
_disableInitializers();
}
function initialize(address _initialAuthority) external initializer {
__AccessManaged_init(_initialAuthority);
}
/// @inheritdoc IMetaMorphoOracleFactory
function isMorphoFactory(address morphoFactory) external view returns (bool) {
MetaMorphoOracleFactoryStorage storage $ = _getMetaMorphoOracleFactoryStorage();
return $._isMorphoFactory[morphoFactory];
}
/// @inheritdoc IMetaMorphoOracleFactory
function isOracle(address oracle) external view returns (bool) {
MetaMorphoOracleFactoryStorage storage $ = _getMetaMorphoOracleFactoryStorage();
return $._isOracle[oracle];
}
/// @inheritdoc IMetaMorphoOracleFactory
function setMorphoFactory(address morphoFactory, bool isFactory) external override restricted {
MetaMorphoOracleFactoryStorage storage $ = _getMetaMorphoOracleFactoryStorage();
$._isMorphoFactory[morphoFactory] = isFactory;
}
/// @inheritdoc IMetaMorphoOracleFactory
function createMetaMorphoOracle(address factory, address metaMorphoVault, uint8 decimals)
external
override
restricted
returns (address)
{
MetaMorphoOracleFactoryStorage storage $ = _getMetaMorphoOracleFactoryStorage();
if (!$._isMorphoFactory[factory]) {
revert NotFactory();
}
// Check whether the vault to create an oracle for is verified by Morpho.
if (!IMetaMorphoFactory(factory).isMetaMorpho(metaMorphoVault)) {
revert NotMetaMorphoVault();
}
// Create the oracle.
address oracle = address(new ERC4626Oracle(IERC4626(metaMorphoVault), decimals));
$._isOracle[oracle] = true;
emit MetaMorphoOracleCreated(oracle);
return oracle;
}
}
"
},
"lib/openzeppelin-contracts/contracts/interfaces/IERC4626.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/access/manager/AccessManagedUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/manager/AccessManaged.sol)
pragma solidity ^0.8.20;
import {AuthorityUtils} from "@openzeppelin/contracts/access/manager/AuthorityUtils.sol";
import {IAccessManager} from "@openzeppelin/contracts/access/manager/IAccessManager.sol";
import {IAccessManaged} from "@openzeppelin/contracts/access/manager/IAccessManaged.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
* permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
* implementing a policy that allows certain callers to access certain functions.
*
* IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
* functions, and ideally only used in `external` functions. See {restricted}.
*/
abstract contract AccessManagedUpgradeable is Initializable, ContextUpgradeable, IAccessManaged {
/// @custom:storage-location erc7201:openzeppelin.storage.AccessManaged
struct AccessManagedStorage {
address _authority;
bool _consumingSchedule;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessManaged")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant AccessManagedStorageLocation = 0xf3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00;
function _getAccessManagedStorage() private pure returns (AccessManagedStorage storage $) {
assembly {
$.slot := AccessManagedStorageLocation
}
}
/**
* @dev Initializes the contract connected to an initial authority.
*/
function __AccessManaged_init(address initialAuthority) internal onlyInitializing {
__AccessManaged_init_unchained(initialAuthority);
}
function __AccessManaged_init_unchained(address initialAuthority) internal onlyInitializing {
_setAuthority(initialAuthority);
}
/**
* @dev Restricts access to a function as defined by the connected Authority for this contract and the
* caller and selector of the function that entered the contract.
*
* [IMPORTANT]
* ====
* In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
* functions that are used as external entry points and are not called internally. Unless you know what you're
* doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
* implications! This is because the permissions are determined by the function that entered the contract, i.e. the
* function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
* ====
*
* [WARNING]
* ====
* Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
* function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
* functions are the only execution paths where a function selector cannot be unambiguously determined from the calldata
* since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
* if no calldata is provided. (See {_checkCanCall}).
*
* The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
* ====
*/
modifier restricted() {
_checkCanCall(_msgSender(), _msgData());
_;
}
/// @inheritdoc IAccessManaged
function authority() public view virtual returns (address) {
AccessManagedStorage storage $ = _getAccessManagedStorage();
return $._authority;
}
/// @inheritdoc IAccessManaged
function setAuthority(address newAuthority) public virtual {
address caller = _msgSender();
if (caller != authority()) {
revert AccessManagedUnauthorized(caller);
}
if (newAuthority.code.length == 0) {
revert AccessManagedInvalidAuthority(newAuthority);
}
_setAuthority(newAuthority);
}
/// @inheritdoc IAccessManaged
function isConsumingScheduledOp() public view returns (bytes4) {
AccessManagedStorage storage $ = _getAccessManagedStorage();
return $._consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
}
/**
* @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
* permissions set by the current authority.
*/
function _setAuthority(address newAuthority) internal virtual {
AccessManagedStorage storage $ = _getAccessManagedStorage();
$._authority = newAuthority;
emit AuthorityUpdated(newAuthority);
}
/**
* @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
* is less than 4 bytes long.
*/
function _checkCanCall(address caller, bytes calldata data) internal virtual {
AccessManagedStorage storage $ = _getAccessManagedStorage();
(bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
authority(),
caller,
address(this),
bytes4(data[0:4])
);
if (!immediate) {
if (delay > 0) {
$._consumingSchedule = true;
IAccessManager(authority()).consumeScheduledOp(caller, data);
$._consumingSchedule = false;
} else {
revert AccessManagedUnauthorized(caller);
}
}
}
}
"
},
"src/oracles/ERC4626Oracle.sol": {
"content": "/// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/interfaces/IERC20Metadata.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {AggregatorV2V3Interface} from "@makina-core/interfaces/AggregatorV2V3Interface.sol";
import {Errors} from "@makina-core/libraries/Errors.sol";
/**
* @title ERC4626Oracle
* @notice Chainlink-like price oracle wrapping ERC4626 vaults.
* This oracle exposes the price of one share of the
* vault it wraps in terms of its underlying asset (the exchange rate).
*/
contract ERC4626Oracle is AggregatorV2V3Interface {
using SafeCast for uint256;
/// @notice The implementation version of this contract.
uint256 public immutable version = 1;
/// @notice The ERC4626 vault.
IERC4626 public immutable vault;
/// @notice The underlying asset of the vault.
IERC20Metadata public immutable underlying;
/// @notice The number of decimals of the price returned by this oracle.
uint8 public immutable decimals;
/// @notice The description for this oracle.
string public description;
/// @notice One unit of the ERC4626 vault.
uint256 public immutable ONE_SHARE;
/// @notice Scaling factor numerator used to adjust price to the desired decimals.
uint256 public immutable SCALING_NUMERATOR;
/// @notice Creates a new ERC4626Wrapper for a given ERC4626 vault.
/// @param _vault The ERC4626 vault.
/// @param _decimals The decimals to use for the price.
constructor(IERC4626 _vault, uint8 _decimals) {
vault = _vault;
underlying = IERC20Metadata(_vault.asset());
uint8 underlyingDecimals = underlying.decimals();
if (_decimals < underlyingDecimals) {
revert Errors.InvalidDecimals();
}
decimals = _decimals;
ONE_SHARE = 10 ** _vault.decimals();
SCALING_NUMERATOR = 10 ** (decimals - underlyingDecimals);
description = string.concat(vault.symbol(), " / ", underlying.symbol());
}
function getPrice() public view returns (uint256) {
return SCALING_NUMERATOR * vault.convertToAssets(ONE_SHARE);
}
//
// V2 Interface:
//
function latestAnswer() external view override returns (int256) {
return getPrice().toInt256();
}
function latestTimestamp() external view override returns (uint256) {
return block.timestamp;
}
function latestRound() external pure override returns (uint256) {
return 1;
}
function getAnswer(uint256) external view override returns (int256) {
return getPrice().toInt256();
}
function getTimestamp(uint256) external view override returns (uint256) {
return block.timestamp;
}
//
// V3 Interface:
//
function getRoundData(uint80)
external
view
override
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound)
{
return _latestRoundData();
}
function latestRoundData()
external
view
override
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound)
{
return _latestRoundData();
}
function _latestRoundData()
internal
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound)
{
uint256 timestamp = block.timestamp;
return (1, getPrice().toInt256(), timestamp, timestamp, 1);
}
}
"
},
"src/interfaces/IMetaMorphoFactory.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
/// @title IMetaMorphoFactory
/// @notice Interface of MetaMorpho's factory.
interface IMetaMorphoFactory {
/// @notice Whether a MetaMorpho vault was created with the factory.
function isMetaMorpho(address target) external view returns (bool);
}
"
},
"src/interfaces/IMetaMorphoOracleFactory.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
interface IMetaMorphoOracleFactory {
error NotMetaMorphoVault();
error NotFactory();
event MetaMorphoOracleCreated(address indexed oracle);
/// @notice Address => Whether this is a trusted Morpho factory.
/// @param morphoFactory The Morpho factory address to check.
/// @return isFactory True if the factory is trusted, false otherwise.
function isMorphoFactory(address morphoFactory) external view returns (bool isFactory);
/// @notice Address => Whether this is an oracle deployed by this factory.
/// @param oracle The oracle address to check.
function isOracle(address oracle) external view returns (bool);
/// @notice Sets the Morpho Registry in the factory contract.
/// @param morphoFactory The address of the Morpho Registry.
/// @param isFactory Flags the factory as trusted or not.
function setMorphoFactory(address morphoFactory, bool isFactory) external;
/// @notice Creates an oracle for the given MetaMorpho Vault.
/// @param factory The factory used to create the MetaMorpho Vault.
/// @param metaMorphoVault The Vault for which to create a wrapper oracle.
/// @param decimals Decimals to use for the oracle price.
function createMetaMorphoOracle(address factory, address metaMorphoVault, uint8 decimals)
external
returns (address);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
"
},
"lib/openzeppelin-contracts/contracts/access/manager/AuthorityUtils.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/manager/AuthorityUtils.sol)
pragma solidity ^0.8.20;
import {IAuthority} from "./IAuthority.sol";
library AuthorityUtils {
/**
* @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility
* for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data.
* This helper function takes care of invoking `canCall` in a backwards compatible way without reverting.
*/
function canCallWithDelay(
address authority,
address caller,
address target,
bytes4 selector
) internal view returns (bool immediate, uint32 delay) {
bytes memory data = abi.encodeCall(IAuthority.canCall, (caller, target, selector));
assembly ("memory-safe") {
mstore(0x00, 0x00)
mstore(0x20, 0x00)
if staticcall(gas(), authority, add(data, 0x20), mload(data), 0x00, 0x40) {
immediate := mload(0x00)
delay := mload(0x20)
// If delay does not fit in a uint32, return 0 (no delay)
// equivalent to: if gt(delay, 0xFFFFFFFF) { delay := 0 }
delay := mul(delay, iszero(shr(32, delay)))
}
}
}
}
"
},
"lib/openzeppelin-contracts/contracts/access/manager/IAccessManager.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/manager/IAccessManager.sol)
pragma solidity ^0.8.20;
interface IAccessManager {
/**
* @dev A delayed operation was scheduled.
*/
event OperationScheduled(
bytes32 indexed operationId,
uint32 indexed nonce,
uint48 schedule,
address caller,
address target,
bytes data
);
/**
* @dev A scheduled operation was executed.
*/
event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev A scheduled operation was canceled.
*/
event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev Informational labelling for a roleId.
*/
event RoleLabel(uint64 indexed roleId, string label);
/**
* @dev Emitted when `account` is granted `roleId`.
*
* NOTE: The meaning of the `since` argument depends on the `newMember` argument.
* If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role,
* otherwise it indicates the execution delay for this account and roleId is updated.
*/
event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);
/**
* @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
*/
event RoleRevoked(uint64 indexed roleId, address indexed account);
/**
* @dev Role acting as admin over a given `roleId` is updated.
*/
event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);
/**
* @dev Role acting as guardian over a given `roleId` is updated.
*/
event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);
/**
* @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
*/
event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);
/**
* @dev Target mode is updated (true = closed, false = open).
*/
event TargetClosed(address indexed target, bool closed);
/**
* @dev Role required to invoke `selector` on `target` is updated to `roleId`.
*/
event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);
/**
* @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
*/
event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);
error AccessManagerAlreadyScheduled(bytes32 operationId);
error AccessManagerNotScheduled(bytes32 operationId);
error AccessManagerNotReady(bytes32 operationId);
error AccessManagerExpired(bytes32 operationId);
error AccessManagerLockedRole(uint64 roleId);
error AccessManagerBadConfirmation();
error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId);
error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector);
error AccessManagerUnauthorizedConsume(address target);
error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
error AccessManagerInvalidInitialAdmin(address initialAdmin);
/**
* @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
* no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
* & {execute} workflow.
*
* This function is usually called by the targeted contract to control immediate execution of restricted functions.
* Therefore we only return true if the call can be performed without any delay. If the call is subject to a
* previously set delay (not zero), then the function should return false and the caller should schedule the operation
* for future execution.
*
* If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
* the operation can be executed if and only if delay is greater than 0.
*
* NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
* is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
* to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
*
* NOTE: This function does not report the permissions of the admin functions in the manager itself. These are defined by the
* {AccessManager} documentation.
*/
function canCall(
address caller,
address target,
bytes4 selector
) external view returns (bool allowed, uint32 delay);
/**
* @dev Expiration delay for scheduled proposals. Defaults to 1 week.
*
* IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
* disabling any scheduling usage.
*/
function expiration() external view returns (uint32);
/**
* @dev Minimum setback for all delay updates, with the exception of execution delays. It
* can be increased without setback (and reset via {revokeRole} in the case event of an
* accidental increase). Defaults to 5 days.
*/
function minSetback() external view returns (uint32);
/**
* @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
*
* NOTE: When the manager itself is closed, admin functions are still accessible to avoid locking the contract.
*/
function isTargetClosed(address target) external view returns (bool);
/**
* @dev Get the role required to call a function.
*/
function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);
/**
* @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
*/
function getTargetAdminDelay(address target) external view returns (uint32);
/**
* @dev Get the id of the role that acts as an admin for the given role.
*
* The admin permission is required to grant the role, revoke the role and update the execution delay to execute
* an operation that is restricted to this role.
*/
function getRoleAdmin(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role that acts as a guardian for a given role.
*
* The guardian permission allows canceling operations that have been scheduled under the role.
*/
function getRoleGuardian(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role current grant delay.
*
* Its value may change at any point without an event emitted following a call to {setGrantDelay}.
* Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
*/
function getRoleGrantDelay(uint64 roleId) external view returns (uint32);
/**
* @dev Get the access details for a given account for a given role. These details include the timepoint at which
* membership becomes active, and the delay applied to all operation by this user that requires this permission
* level.
*
* Returns:
* [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
* [1] Current execution delay for the account.
* [2] Pending execution delay for the account.
* [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
*/
function getAccess(
uint64 roleId,
address account
) external view returns (uint48 since, uint32 currentDelay, uint32 pendingDelay, uint48 effect);
/**
* @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
* permission might be associated with an execution delay. {getAccess} can provide more details.
*/
function hasRole(uint64 roleId, address account) external view returns (bool isMember, uint32 executionDelay);
/**
* @dev Give a label to a role, for improved role discoverability by UIs.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleLabel} event.
*/
function labelRole(uint64 roleId, string calldata label) external;
/**
* @dev Add `account` to `roleId`, or change its execution delay.
*
* This gives the account the authorization to call any function that is restricted to this role. An optional
* execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
* that is restricted to members of this role. The user will only be able to execute the operation after the delay has
* passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
*
* If the account has already been granted this role, the execution delay will be updated. This update is not
* immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
* called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
* operation executed in the 3 hours that follows this update was indeed scheduled before this update.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - granted role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleGranted} event.
*/
function grantRole(uint64 roleId, address account, uint32 executionDelay) external;
/**
* @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
* no effect.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - revoked role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function revokeRole(uint64 roleId, address account) external;
/**
* @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
* the role this call has no effect.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function renounceRole(uint64 roleId, address callerConfirmation) external;
/**
* @dev Change admin role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleAdminChanged} event
*/
function setRoleAdmin(uint64 roleId, uint64 admin) external;
/**
* @dev Change guardian role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGuardianChanged} event
*/
function setRoleGuardian(uint64 roleId, uint64 guardian) external;
/**
* @dev Update the delay for granting a `roleId`.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGrantDelayChanged} event.
*/
function setGrantDelay(uint64 roleId, uint32 newDelay) external;
/**
* @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetFunctionRoleUpdated} event per selector.
*/
function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;
/**
* @dev Set the delay for changing the configuration of a given target contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetAdminDelayUpdated} event.
*/
function setTargetAdminDelay(address target, uint32 newDelay) external;
/**
* @dev Set the closed flag for a contract.
*
* Closing the manager itself won't disable access to admin methods to avoid locking the contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetClosed} event.
*/
function setTargetClosed(address target, bool closed) external;
/**
* @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
* operation is not yet scheduled, has expired, was executed, or was canceled.
*/
function getSchedule(bytes32 id) external view returns (uint48);
/**
* @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
* been scheduled.
*/
function getNonce(bytes32 id) external view returns (uint32);
/**
* @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
* choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
* required for the caller. The special value zero will automatically set the earliest possible time.
*
* Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
* the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
* scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
*
* Emits a {OperationScheduled} event.
*
* NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
* this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
* contract if it is using standard Solidity ABI encoding.
*/
function schedule(
address target,
bytes calldata data,
uint48 when
) external returns (bytes32 operationId, uint32 nonce);
/**
* @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
* execution delay is 0.
*
* Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
* operation wasn't previously scheduled (if the caller doesn't have an execution delay).
*
* Emits an {OperationExecuted} event only if the call was scheduled and delayed.
*/
function execute(address target, bytes calldata data) external payable returns (uint32);
/**
* @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
* operation that is cancelled.
*
* Requirements:
*
* - the caller must be the proposer, a guardian of the targeted function, or a global admin
*
* Emits a {OperationCanceled} event.
*/
function cancel(address caller, address target, bytes calldata data) external returns (uint32);
/**
* @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
* (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
*
* This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
* with all the verifications that it implies.
*
* Emit a {OperationExecuted} event.
*/
function consumeScheduledOp(address caller, bytes calldata data) external;
/**
* @dev Hashing function for delayed operations.
*/
function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);
/**
* @dev Changes the authority of a target managed by this manager instance.
*
* Requirements:
*
* - the caller must be a global admin
*/
function updateAuthority(address target, address newAuthority) external;
}
"
},
"lib/openzeppelin-contracts/contracts/access/manager/IAccessManaged.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol)
pragma solidity ^0.8.20;
interface IAccessManaged {
/**
* @dev Authority that manages this contract was updated.
*/
event AuthorityUpdated(address authority);
error AccessManagedUnauthorized(address caller);
error AccessManagedRequiredDelay(address caller, uint32 delay);
error AccessManagedInvalidAuthority(address authority);
/**
* @dev Returns the current authority.
*/
function authority() external view returns (address);
/**
* @dev Transfers control to a new authority. The caller must be the current authority.
*/
function setAuthority(address) external;
/**
* @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
* being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
* attacker controlled calls.
*/
function isConsumingScheduledOp() external view returns (bytes4);
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/utils/ContextUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/Initializable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reinitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
*
* NOTE: Consider following the ERC-7201 formula to derive storage locations.
*/
function _initializableStorageSlot() internal pure virtual returns (bytes32) {
return INITIALIZABLE_STORAGE;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
bytes32 slot = _initializableStorageSlot();
assembly {
$.slot := slot
}
}
}
"
},
"lib/openzeppelin-contracts/contracts/interfaces/IERC20Metadata.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
"
},
"lib/openzeppelin-contracts/contracts/utils/math/SafeCast.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {\
Submitted on: 2025-09-17 17:12:32
Comments
Log in to comment.
No comments yet.