Formatters

Description:

Smart contract deployed on Ethereum with Factory features.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "@openzeppelin/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "@openzeppelin/contracts/utils/math/SignedMath.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/Strings.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
"
    },
    "abdk-libraries-solidity/ABDKMath64x64.sol": {
      "content": "// SPDX-License-Identifier: BSD-4-Clause
/*
 * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
 * Author: Mikhail Vladimirov <mikhail.vladimirov@gmail.com>
 */
pragma solidity ^0.8.0;

/**
 * Smart contract library of mathematical functions operating with signed
 * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
 * basically a simple fraction whose numerator is signed 128-bit integer and
 * denominator is 2^64.  As long as denominator is always the same, there is no
 * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
 * represented by int128 type holding only the numerator.
 */
library ABDKMath64x64 {
  /*
   * Minimum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;

  /*
   * Maximum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

  /**
   * Convert signed 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromInt (int256 x) internal pure returns (int128) {
    unchecked {
      require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
      return int128 (x << 64);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 64-bit integer number
   * rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64-bit integer number
   */
  function toInt (int128 x) internal pure returns (int64) {
    unchecked {
      return int64 (x >> 64);
    }
  }

  /**
   * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromUInt (uint256 x) internal pure returns (int128) {
    unchecked {
      require (x <= 0x7FFFFFFFFFFFFFFF);
      return int128 (int256 (x << 64));
    }
  }

  /**
   * Convert signed 64.64 fixed point number into unsigned 64-bit integer
   * number rounding down.  Revert on underflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return unsigned 64-bit integer number
   */
  function toUInt (int128 x) internal pure returns (uint64) {
    unchecked {
      require (x >= 0);
      return uint64 (uint128 (x >> 64));
    }
  }

  /**
   * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
   * number rounding down.  Revert on overflow.
   *
   * @param x signed 128.128-bin fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function from128x128 (int256 x) internal pure returns (int128) {
    unchecked {
      int256 result = x >> 64;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 128.128 fixed point
   * number.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 128.128 fixed point number
   */
  function to128x128 (int128 x) internal pure returns (int256) {
    unchecked {
      return int256 (x) << 64;
    }
  }

  /**
   * Calculate x + y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function add (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) + y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x - y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sub (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) - y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x * y rounding down.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function mul (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) * y >> 64;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
   * number and y is signed 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y signed 256-bit integer number
   * @return signed 256-bit integer number
   */
  function muli (int128 x, int256 y) internal pure returns (int256) {
    unchecked {
      if (x == MIN_64x64) {
        require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
          y <= 0x1000000000000000000000000000000000000000000000000);
        return -y << 63;
      } else {
        bool negativeResult = false;
        if (x < 0) {
          x = -x;
          negativeResult = true;
        }
        if (y < 0) {
          y = -y; // We rely on overflow behavior here
          negativeResult = !negativeResult;
        }
        uint256 absoluteResult = mulu (x, uint256 (y));
        if (negativeResult) {
          require (absoluteResult <=
            0x8000000000000000000000000000000000000000000000000000000000000000);
          return -int256 (absoluteResult); // We rely on overflow behavior here
        } else {
          require (absoluteResult <=
            0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
          return int256 (absoluteResult);
        }
      }
    }
  }

  /**
   * Calculate x * y rounding down, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y unsigned 256-bit integer number
   * @return unsigned 256-bit integer number
   */
  function mulu (int128 x, uint256 y) internal pure returns (uint256) {
    unchecked {
      if (y == 0) return 0;

      require (x >= 0);

      uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
      uint256 hi = uint256 (int256 (x)) * (y >> 128);

      require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      hi <<= 64;

      require (hi <=
        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
      return hi + lo;
    }
  }

  /**
   * Calculate x / y rounding towards zero.  Revert on overflow or when y is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function div (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);
      int256 result = (int256 (x) << 64) / y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are signed 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x signed 256-bit integer number
   * @param y signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divi (int256 x, int256 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);

      bool negativeResult = false;
      if (x < 0) {
        x = -x; // We rely on overflow behavior here
        negativeResult = true;
      }
      if (y < 0) {
        y = -y; // We rely on overflow behavior here
        negativeResult = !negativeResult;
      }
      uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
      if (negativeResult) {
        require (absoluteResult <= 0x80000000000000000000000000000000);
        return -int128 (absoluteResult); // We rely on overflow behavior here
      } else {
        require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
        return int128 (absoluteResult); // We rely on overflow behavior here
      }
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divu (uint256 x, uint256 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);
      uint128 result = divuu (x, y);
      require (result <= uint128 (MAX_64x64));
      return int128 (result);
    }
  }

  /**
   * Calculate -x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function neg (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != MIN_64x64);
      return -x;
    }
  }

  /**
   * Calculate |x|.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function abs (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != MIN_64x64);
      return x < 0 ? -x : x;
    }
  }

  /**
   * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function inv (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != 0);
      int256 result = int256 (0x100000000000000000000000000000000) / x;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function avg (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      return int128 ((int256 (x) + int256 (y)) >> 1);
    }
  }

  /**
   * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
   * Revert on overflow or in case x * y is negative.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function gavg (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 m = int256 (x) * int256 (y);
      require (m >= 0);
      require (m <
          0x4000000000000000000000000000000000000000000000000000000000000000);
      return int128 (sqrtu (uint256 (m)));
    }
  }

  /**
   * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y uint256 value
   * @return signed 64.64-bit fixed point number
   */
  function pow (int128 x, uint256 y) internal pure returns (int128) {
    unchecked {
      bool negative = x < 0 && y & 1 == 1;

      uint256 absX = uint128 (x < 0 ? -x : x);
      uint256 absResult;
      absResult = 0x100000000000000000000000000000000;

      if (absX <= 0x10000000000000000) {
        absX <<= 63;
        while (y != 0) {
          if (y & 0x1 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x2 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x4 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x8 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          y >>= 4;
        }

        absResult >>= 64;
      } else {
        uint256 absXShift = 63;
        if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
        if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
        if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
        if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
        if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
        if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }

        uint256 resultShift = 0;
        while (y != 0) {
          require (absXShift < 64);

          if (y & 0x1 != 0) {
            absResult = absResult * absX >> 127;
            resultShift += absXShift;
            if (absResult > 0x100000000000000000000000000000000) {
              absResult >>= 1;
              resultShift += 1;
            }
          }
          absX = absX * absX >> 127;
          absXShift <<= 1;
          if (absX >= 0x100000000000000000000000000000000) {
              absX >>= 1;
              absXShift += 1;
          }

          y >>= 1;
        }

        require (resultShift < 64);
        absResult >>= 64 - resultShift;
      }
      int256 result = negative ? -int256 (absResult) : int256 (absResult);
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down.  Revert if x < 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sqrt (int128 x) internal pure returns (int128) {
    unchecked {
      require (x >= 0);
      return int128 (sqrtu (uint256 (int256 (x)) << 64));
    }
  }

  /**
   * Calculate binary logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function log_2 (int128 x) internal pure returns (int128) {
    unchecked {
      require (x > 0);

      int256 msb = 0;
      int256 xc = x;
      if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
      if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
      if (xc >= 0x10000) { xc >>= 16; msb += 16; }
      if (xc >= 0x100) { xc >>= 8; msb += 8; }
      if (xc >= 0x10) { xc >>= 4; msb += 4; }
      if (xc >= 0x4) { xc >>= 2; msb += 2; }
      if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

      int256 result = msb - 64 << 64;
      uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
      for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
        ux *= ux;
        uint256 b = ux >> 255;
        ux >>= 127 + b;
        result += bit * int256 (b);
      }

      return int128 (result);
    }
  }

  /**
   * Calculate natural logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function ln (int128 x) internal pure returns (int128) {
    unchecked {
      require (x > 0);

      return int128 (int256 (
          uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
    }
  }

  /**
   * Calculate binary exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp_2 (int128 x) internal pure returns (int128) {
    unchecked {
      require (x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      uint256 result = 0x80000000000000000000000000000000;

      if (x & 0x8000000000000000 > 0)
        result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
      if (x & 0x4000000000000000 > 0)
        result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
      if (x & 0x2000000000000000 > 0)
        result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
      if (x & 0x1000000000000000 > 0)
        result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
      if (x & 0x800000000000000 > 0)
        result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
      if (x & 0x400000000000000 > 0)
        result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
      if (x & 0x200000000000000 > 0)
        result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
      if (x & 0x100000000000000 > 0)
        result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
      if (x & 0x80000000000000 > 0)
        result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
      if (x & 0x40000000000000 > 0)
        result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
      if (x & 0x20000000000000 > 0)
        result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
      if (x & 0x10000000000000 > 0)
        result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
      if (x & 0x8000000000000 > 0)
        result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
      if (x & 0x4000000000000 > 0)
        result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
      if (x & 0x2000000000000 > 0)
        result = result * 0x1000162E525EE054754457D5995292026 >> 128;
      if (x & 0x1000000000000 > 0)
        result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
      if (x & 0x800000000000 > 0)
        result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
      if (x & 0x400000000000 > 0)
        result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
      if (x & 0x200000000000 > 0)
        result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
      if (x & 0x100000000000 > 0)
        result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
      if (x & 0x80000000000 > 0)
        result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
      if (x & 0x40000000000 > 0)
        result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
      if (x & 0x20000000000 > 0)
        result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
      if (x & 0x10000000000 > 0)
        result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
      if (x & 0x8000000000 > 0)
        result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
      if (x & 0x4000000000 > 0)
        result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
      if (x & 0x2000000000 > 0)
        result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
      if (x & 0x1000000000 > 0)
        result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
      if (x & 0x800000000 > 0)
        result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
      if (x & 0x400000000 > 0)
        result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
      if (x & 0x200000000 > 0)
        result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
      if (x & 0x100000000 > 0)
        result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
      if (x & 0x80000000 > 0)
        result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
      if (x & 0x40000000 > 0)
        result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
      if (x & 0x20000000 > 0)
        result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
      if (x & 0x10000000 > 0)
        result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
      if (x & 0x8000000 > 0)
        result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
      if (x & 0x4000000 > 0)
        result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
      if (x & 0x2000000 > 0)
        result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
      if (x & 0x1000000 > 0)
        result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
      if (x & 0x800000 > 0)
        result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
      if (x & 0x400000 > 0)
        result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
      if (x & 0x200000 > 0)
        result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
      if (x & 0x100000 > 0)
        result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
      if (x & 0x80000 > 0)
        result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
      if (x & 0x40000 > 0)
        result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
      if (x & 0x20000 > 0)
        result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
      if (x & 0x10000 > 0)
        result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
      if (x & 0x8000 > 0)
        result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
      if (x & 0x4000 > 0)
        result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
      if (x & 0x2000 > 0)
        result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
      if (x & 0x1000 > 0)
        result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
      if (x & 0x800 > 0)
        result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
      if (x & 0x400 > 0)
        result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
      if (x & 0x200 > 0)
        result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
      if (x & 0x100 > 0)
        result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
      if (x & 0x80 > 0)
        result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
      if (x & 0x40 > 0)
        result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
      if (x & 0x20 > 0)
        result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
      if (x & 0x10 > 0)
        result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
      if (x & 0x8 > 0)
        result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
      if (x & 0x4 > 0)
        result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
      if (x & 0x2 > 0)
        result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
      if (x & 0x1 > 0)
        result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;

      result >>= uint256 (int256 (63 - (x >> 64)));
      require (result <= uint256 (int256 (MAX_64x64)));

      return int128 (int256 (result));
    }
  }

  /**
   * Calculate natural exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp (int128 x) internal pure returns (int128) {
    unchecked {
      require (x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      return exp_2 (
          int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return unsigned 64.64-bit fixed point number
   */
  function divuu (uint256 x, uint256 y) private pure returns (uint128) {
    unchecked {
      require (y != 0);

      uint256 result;

      if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        result = (x << 64) / y;
      else {
        uint256 msb = 192;
        uint256 xc = x >> 192;
        if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
        if (xc >= 0x10000) { xc >>= 16; msb += 16; }
        if (xc >= 0x100) { xc >>= 8; msb += 8; }
        if (xc >= 0x10) { xc >>= 4; msb += 4; }
        if (xc >= 0x4) { xc >>= 2; msb += 2; }
        if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

        result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
        require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 hi = result * (y >> 128);
        uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 xh = x >> 192;
        uint256 xl = x << 64;

        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here
        lo = hi << 128;
        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here

        result += xh == hi >> 128 ? xl / y : 1;
      }

      require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return uint128 (result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
   * number.
   *
   * @param x unsigned 256-bit integer number
   * @return unsigned 128-bit integer number
   */
  function sqrtu (uint256 x) private pure returns (uint128) {
    unchecked {
      if (x == 0) return 0;
      else {
        uint256 xx = x;
        uint256 r = 1;
        if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
        if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
        if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
        if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
        if (xx >= 0x100) { xx >>= 8; r <<= 4; }
        if (xx >= 0x10) { xx >>= 4; r <<= 2; }
        if (xx >= 0x4) { r <<= 1; }
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1; // Seven iterations should be enough
        uint256 r1 = x / r;
        return uint128 (r < r1 ? r : r1);
      }
    }
  }
}
"
    },
    "contracts/utils/Formatters.sol": {
      "content": "// SPDX-License-Identifier: MIT\r
pragma solidity 0.8.20;\r
\r
import "@openzeppelin/contracts/utils/Strings.sol";\r
import "abdk-libraries-solidity/ABDKMath64x64.sol";\r
\r
contract Formatters {\r
    using Strings for uint256;\r
\r
    function formatEther(\r
        uint256 amountInWei\r
    ) public pure returns (string memory) {\r
        uint256 wholePart = amountInWei / 1 ether;\r
        uint256 remainder = amountInWei % 1 ether;\r
        \r
        // Pad remainder to 18 digits (wei precision)\r
        string memory decimalStr = padLeftWithZeros(remainder.toString(), 18);\r
        \r
        // Remove trailing zeroes\r
        bytes memory decimalBytes = bytes(decimalStr);\r
        uint256 cutLength = decimalBytes.length;\r
        while (cutLength > 0 && decimalBytes[cutLength - 1] == "0") {\r
            cutLength--;\r
        }\r
        \r
        if (cutLength == 0) {\r
            return wholePart.toString();\r
        }\r
        \r
        // Slice the decimal string to the correct length\r
        bytes memory trimmedDecimal = new bytes(cutLength);\r
        for (uint256 i = 0; i < cutLength; i++) {\r
            trimmedDecimal[i] = decimalBytes[i];\r
        }\r
        \r
        return string(abi.encodePacked(wholePart.toString(), ".", string(trimmedDecimal)));\r
    }\r
\r
    function formatPercentage(\r
        uint256 input\r
    ) public pure returns (string memory) {\r
        uint256 scaledValue = input / 1e16;\r
        uint256 wholePart = scaledValue / 100;\r
        uint256 fractionalPart = scaledValue % 100;\r
\r
        if (fractionalPart == 0) {\r
            return wholePart.toString();\r
        }\r
\r
        string memory fractionalStr = fractionalPart < 10\r
            ? string(abi.encodePacked("0", fractionalPart.toString()))\r
            : fractionalPart.toString();\r
\r
        return\r
            string(abi.encodePacked(wholePart.toString(), ".", fractionalStr));\r
    }\r
\r
    function formatDiscount(\r
        uint256 discount\r
    ) public pure returns (string memory) {\r
        if (discount == 0) {\r
            return "0";\r
        }\r
        if (discount < 100) {\r
            return\r
                string(\r
                    abi.encodePacked(\r
                        "0.",\r
                        discount < 10\r
                            ? string(abi.encodePacked("0", discount.toString()))\r
                            : discount.toString()\r
                    )\r
                );\r
        } else {\r
            uint256 wholePart = discount / 100;\r
            uint256 fractionalPart = discount % 100;\r
\r
            if (fractionalPart == 0) {\r
                return wholePart.toString();\r
            } else {\r
                string memory fractionalStr = fractionalPart < 10\r
                    ? string(abi.encodePacked("0", fractionalPart.toString()))\r
                    : fractionalPart.toString();\r
\r
                return\r
                    string(\r
                        abi.encodePacked(\r
                            wholePart.toString(),\r
                            ".",\r
                            fractionalStr\r
                        )\r
                    );\r
            }\r
        }\r
    }\r
\r
    function padLeftWithZeros(\r
        string memory input,\r
        uint8 targetLength\r
    ) internal pure returns (string memory) {\r
        bytes memory inputBytes = bytes(input);\r
        if (inputBytes.length >= targetLength) {\r
            return input;\r
        }\r
\r
        bytes memory padded = new bytes(targetLength);\r
        uint256 padLength = targetLength - inputBytes.length;\r
\r
        for (uint256 i = 0; i < padLength; i++) {\r
            padded[i] = "0";\r
        }\r
\r
        for (uint256 i = 0; i < inputBytes.length; i++) {\r
            padded[padLength + i] = inputBytes[i];\r
        }\r
\r
        return string(padded);\r
    }\r
}\r
"
    }
  },
  "settings": {
    "optimizer": {
      "enabled": true,
      "runs": 200
    },
    "evmVersion": "paris",
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    }
  }
}}

Tags:
Factory|addr:0x558ca4a5de965e951bd3e1301eb71646ca477b87|verified:true|block:23452932|tx:0x210d379fc0a0f523b2e266f9152c3122d2975e2e4f4349f481591604f25eba2d|first_check:1758967988

Submitted on: 2025-09-27 12:13:10

Comments

Log in to comment.

No comments yet.