Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/pepetual.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
interface IUniswapV2Factory {
function createPair(address tokenA, address tokenB) external returns (address pair);
function getPair(address tokenA, address tokenB) external view returns (address pair);
}
interface IUniswapV2Router02 {
function factory() external view returns (address);
function WETH() external view returns (address);
function addLiquidityETH(
address token,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external payable returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);
function getAmountsOut(uint256 amountIn, address[] calldata path)
external
view
returns (uint256[] memory amounts);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external;
}
interface IPondManager {
function addToPond(uint256 pepeAmount) external;
function updateHolderEligibility(address holder, uint256 newBalance) external;
function paused() external view returns (bool);
}
contract PEPETUAL is ERC20, ReentrancyGuard, Pausable, Ownable {
using SafeERC20 for IERC20;
// ==================== Token Configuration ====================
uint256 public constant MAX_TAX_RATE = 1000; // 10% maximum
uint256 public taxRate = 969; // 9.69% default
uint256 private constant TAX_DIVISOR = 10000;
// Fee distribution (matching original FeeHandlerV5_PEPE)
uint256 public constant POND_BPS = 6900; // 6.9% → Pond
uint256 public constant PEPE_BURN_BPS = 690; // 0.69% → PEPE burn
uint256 public constant SELF_BURN_BPS = 690; // 0.69% → PEPETUAL burn
uint256 public constant REWARDS_BPS = 690; // 0.69% → Holder rewards
uint256 public constant DEV_BPS = 690; // 0.69% → Dev
uint256 public constant ART_BPS = 30; // 0.03% → Art
uint256 public constant TOTAL_BPS = 9690; // Total must equal 9690
// ==================== Router and Trading ====================
IUniswapV2Router02 public immutable uniswapV2Router;
address public immutable uniswapV2Pair;
IERC20 public PEPE;
address public immutable WETH;
mapping(address => bool) public excludedFromFees;
mapping(address => bool) public automatedMarketMakerPairs;
mapping(address => bool) public isLimitExempt;
// Transfer restrictions
bool public walletToWalletTransfersDisabled = false; // Can be toggled by owner
// Limits
uint256 public maxTxAmount;
uint256 public maxWalletAmount;
bool public limitsInEffect = true;
// ==================== MEV Protection (Minimal) ====================
// Only keep basic sandwich protection
mapping(address => uint256) public lastBuyBlock;
uint256 public sandwichProtectionBlocks = 1; // Wait 1 block after buying before selling
bool public mevProtectionEnabled = true;
// ==================== Whale Protection ====================
struct WhaleConfig {
uint256 whaleThreshold; // Balance threshold for whale status
uint256 maxSellPercent; // Max % of balance whale can sell
uint256 sellCooldown; // Cooldown between whale sells (blocks)
uint256 progressiveTaxRate; // Additional tax for whales
}
WhaleConfig public whaleConfig = WhaleConfig({
whaleThreshold: 10000 * 10 ** 18, // 10k tokens = whale
maxSellPercent: 500, // 5% max sell
sellCooldown: 50, // ~10 minute cooldown
progressiveTaxRate: 200 // +2% tax for whales
});
mapping(address => uint256) public lastWhaleSell;
mapping(address => bool) public isWhaleExempt;
// ==================== Rewards System ====================
struct RewardSnapshot {
uint256 totalSupplySnapshot;
uint256 pepePerToken;
uint256 timestamp;
}
RewardSnapshot[] public rewardSnapshots;
mapping(address => bool) public excludedFromRewards;
uint256 private constant REWARD_MAGNITUDE = 1e18;
uint256 public magnifiedRewardsPerShare;
mapping(address => int256) private magnifiedRewardCorrections;
mapping(address => uint256) public withdrawnRewards;
uint256 public reservedPepeForRewards; // PEPE reserved for rewards
uint256 public totalPepeDistributed;
uint256 public totalPepeClaimed;
uint256 public minBalanceForRewards = 100 * 10 ** 18; // 100 tokens minimum
uint256 public rewardClaimCooldown = 3600; // 1 hour
mapping(address => uint256) public lastRewardClaim;
uint256 public pendingRewardsBuffer;
address[] private rewardExclusionList;
mapping(address => bool) private rewardExclusionTracked;
// ==================== Pond Integration ====================
IPondManager public pondManager;
// ==================== Reentrancy Protection ====================
bool private processingFees;
// ==================== Slippage Protection ====================
uint256 public maxSlippageBPS = 100; // 1% default (100 basis points)
// ==================== Fee Processing ====================
uint256 public feeProcessingThreshold = 10000; // 0.001% of supply in basis points (10000 = 0.001%)
// ==================== Wallets ====================
address public devWallet;
address public artWallet;
uint256 public pendingPondPepe;
// ==================== Events ====================
event TaxRateUpdated(uint256 oldRate, uint256 newRate);
event RewardSnapshotTaken(
uint256 indexed snapshotId, uint256 indexed pepePerToken, uint256 totalSupply
);
event RewardsClaimed(address indexed user, uint256 indexed amount);
event FeesProcessed(uint256 indexed rewards, uint256 indexed pond, uint256 indexed operations);
event MEVProtectionTriggered(address indexed user, string reason);
event WhaleProtectionTriggered(
address indexed whale, uint256 indexed attemptedAmount, uint256 indexed allowedAmount
);
event ProgressiveTaxApplied(
address indexed user, uint256 indexed baseTax, uint256 indexed finalTax
);
event PondManagerUpdated(address indexed oldManager, address indexed newManager);
event RewardsExclusionUpdated(address indexed account, bool excluded);
event ExternalPondPepeDeposited(address indexed sender, uint256 amount, uint256 forwarded);
event ExternalRewardsPepeDeposited(address indexed sender, uint256 amount);
event LimitExemptionUpdated(address indexed account, bool exempt);
// ==================== Constructor ====================
constructor(
address router_,
address pepe_,
address devWallet_,
address artWallet_,
address pondManager_
) ERC20("PEPETUAL", "PEPETUAL") Ownable(msg.sender) {
require(router_ != address(0), "Invalid router");
require(pepe_ != address(0), "Invalid PEPE token");
require(devWallet_ != address(0), "Invalid dev wallet");
require(artWallet_ != address(0), "Invalid art wallet");
// Allow temporary address for deployment
// require(pondManager_ != address(0), "Invalid pond manager");
uint256 totalSupply_ = 1_000_000_000 * 10 ** 18; // 1 billion tokens
// Initialize router and pair
uniswapV2Router = IUniswapV2Router02(router_);
WETH = uniswapV2Router.WETH();
PEPE = IERC20(pepe_);
// Check if pair exists first
address pairAddress =
IUniswapV2Factory(uniswapV2Router.factory()).getPair(address(this), WETH);
if (pairAddress == address(0)) {
pairAddress =
IUniswapV2Factory(uniswapV2Router.factory()).createPair(address(this), WETH);
}
uniswapV2Pair = pairAddress;
automatedMarketMakerPairs[uniswapV2Pair] = true;
// Set wallets
devWallet = devWallet_;
artWallet = artWallet_;
pondManager = IPondManager(pondManager_);
// Set limits (2% of total supply)
maxTxAmount = totalSupply_ * 200 / 10000;
maxWalletAmount = totalSupply_ * 200 / 10000;
// Exclude from fees and rewards
excludedFromFees[owner()] = true;
excludedFromFees[address(this)] = true;
excludedFromFees[devWallet] = true;
excludedFromFees[artWallet] = true;
isLimitExempt[owner()] = true;
isLimitExempt[address(this)] = true;
excludedFromRewards[owner()] = true;
excludedFromRewards[address(this)] = true;
excludedFromRewards[uniswapV2Pair] = true;
excludedFromRewards[address(0xdead)] = true;
excludedFromRewards[devWallet] = true;
excludedFromRewards[artWallet] = true;
if (address(pondManager) != address(0)) {
excludedFromRewards[address(pondManager)] = true;
}
_addRewardExclusion(owner());
_addRewardExclusion(address(this));
_addRewardExclusion(uniswapV2Pair);
_addRewardExclusion(address(0xdead));
_addRewardExclusion(devWallet);
_addRewardExclusion(artWallet);
if (address(pondManager) != address(0)) {
_addRewardExclusion(address(pondManager));
}
// Approve router for swaps
_approve(address(this), router_, type(uint256).max);
// Mint tokens to owner
_mint(owner(), totalSupply_);
_syncRewardExclusion(owner(), true);
_syncRewardExclusion(address(this), true);
_syncRewardExclusion(uniswapV2Pair, true);
_syncRewardExclusion(address(0xdead), true);
_syncRewardExclusion(devWallet, true);
_syncRewardExclusion(artWallet, true);
if (address(pondManager) != address(0)) {
_syncRewardExclusion(address(pondManager), true);
}
}
// ==================== Core Transfer Logic ====================
function _isTransferAllowed(address from, address to) internal view returns (bool) {
// Always allow minting and burning
if (from == address(0) || to == address(0)) return true;
// Always allow transfers from/to this contract
if (from == address(this) || to == address(this)) return true;
// Always allow transfers from/to owner or limit-exempt addresses
if (from == owner() || to == owner()) return true;
if (isLimitExempt[from] || isLimitExempt[to]) return true;
// Always allow transfers from/to excluded addresses
if (excludedFromFees[from] || excludedFromFees[to]) return true;
// Always allow transfers from/to DEX pairs and router
if (automatedMarketMakerPairs[from] || automatedMarketMakerPairs[to]) return true;
if (from == address(uniswapV2Router) || to == address(uniswapV2Router)) return true;
// Check if wallet-to-wallet transfers are disabled
if (walletToWalletTransfersDisabled) {
return false; // Block wallet-to-wallet transfers
}
return true; // Allow if not disabled
}
function _update(address from, address to, uint256 amount) internal override {
require(!paused(), "Token transfers paused");
// Check if transfer is allowed (prevent wallet-to-wallet to force DEX usage)
bool isAllowedTransfer = _isTransferAllowed(from, to);
require(isAllowedTransfer, "Wallet-to-wallet transfers disabled");
// Apply protections and limits
if (mevProtectionEnabled && !excludedFromFees[from] && !excludedFromFees[to]) {
_applyMEVProtection(from, to);
}
if (
limitsInEffect && from != owner() && to != owner() && !excludedFromFees[from]
&& !excludedFromFees[to] && !isLimitExempt[from] && !isLimitExempt[to]
) {
amount = _applyLimitsAndProtections(from, to, amount);
}
(uint256 netAmount, uint256 feeAmount, bool takeFeeFromRecipient) =
_calculateTax(from, to, amount);
if (feeAmount > 0 && !takeFeeFromRecipient) {
_executeTokenTransfer(from, address(this), feeAmount);
}
_executeTokenTransfer(from, to, netAmount);
if (feeAmount > 0 && takeFeeFromRecipient) {
_executeTokenTransfer(to, address(this), feeAmount);
}
if (feeAmount > 0) {
_processFeesIfNeeded();
}
if (address(pondManager) != address(0)) {
if (from != address(0) && from != address(this)) {
pondManager.updateHolderEligibility(from, balanceOf(from));
}
if (to != address(0) && to != address(this)) {
pondManager.updateHolderEligibility(to, balanceOf(to));
}
}
}
function _applyLimitsAndProtections(address from, address to, uint256 amount)
internal
returns (uint256)
{
if (isLimitExempt[from] || isLimitExempt[to]) {
return amount;
}
// Whale protection for sells
if (automatedMarketMakerPairs[to] && !isWhaleExempt[from]) {
amount = _applyWhaleProtection(from, amount);
}
// Check max transaction
require(amount <= maxTxAmount, "Transfer amount exceeds max");
// Check max wallet (for buys)
if (automatedMarketMakerPairs[from] && to != address(uniswapV2Router)) {
require(balanceOf(to) + amount <= maxWalletAmount, "Wallet would exceed max");
}
return amount;
}
function _calculateTax(address from, address to, uint256 amount)
internal
returns (uint256 netAmount, uint256 feeAmount, bool takeFeeFromRecipient)
{
netAmount = amount;
if (excludedFromFees[from]) {
return (netAmount, 0, false);
}
bool isBuy = automatedMarketMakerPairs[from];
bool isSell = automatedMarketMakerPairs[to];
if (!isBuy && !isSell) {
return (netAmount, 0, false);
}
uint256 currentTaxRate = taxRate;
if (
!isWhaleExempt[from] && !isLimitExempt[from]
&& balanceOf(from) >= whaleConfig.whaleThreshold
) {
currentTaxRate += whaleConfig.progressiveTaxRate;
emit ProgressiveTaxApplied(from, taxRate, currentTaxRate);
}
if (!isWhaleExempt[to] && !isLimitExempt[to] && balanceOf(to) >= whaleConfig.whaleThreshold)
{
currentTaxRate += whaleConfig.progressiveTaxRate;
emit ProgressiveTaxApplied(to, taxRate, currentTaxRate);
}
if (currentTaxRate > MAX_TAX_RATE) {
currentTaxRate = MAX_TAX_RATE;
}
feeAmount = (amount * currentTaxRate) / TAX_DIVISOR;
if (feeAmount == 0) {
return (netAmount, 0, false);
}
takeFeeFromRecipient = isBuy;
if (!takeFeeFromRecipient) {
netAmount = amount - feeAmount;
}
return (netAmount, feeAmount, takeFeeFromRecipient);
}
// ==================== MEV Protection (Minimal) ====================
function _applyMEVProtection(address from, address to) internal {
// Simple sandwich protection only
bool isBuy = automatedMarketMakerPairs[from];
bool isSell = automatedMarketMakerPairs[to];
if (isBuy) {
// Record buy block for recipient
lastBuyBlock[to] = block.number;
}
if (isSell && sandwichProtectionBlocks > 0) {
// Only check if seller bought recently (sandwich attack prevention)
require(
block.number >= lastBuyBlock[from] + sandwichProtectionBlocks,
"Please wait 1 block after buying"
);
emit MEVProtectionTriggered(from, "Sandwich protection");
}
}
function _executeTokenTransfer(address from, address to, uint256 amount) internal {
if (amount == 0) {
return;
}
super._update(from, to, amount);
_updateRewardCorrections(from, to, amount);
}
function _updateRewardCorrections(address from, address to, uint256 amount) internal {
if (amount == 0) {
return;
}
int256 magnifiedAmount = int256(magnifiedRewardsPerShare * amount);
if (from == address(0)) {
magnifiedRewardCorrections[to] -= magnifiedAmount;
} else if (to == address(0)) {
magnifiedRewardCorrections[from] += magnifiedAmount;
} else {
magnifiedRewardCorrections[from] += magnifiedAmount;
magnifiedRewardCorrections[to] -= magnifiedAmount;
}
}
function _addRewardExclusion(address account) internal {
if (account == address(0) || rewardExclusionTracked[account]) {
return;
}
rewardExclusionTracked[account] = true;
rewardExclusionList.push(account);
}
function _syncRewardExclusion(address account, bool excluded) internal {
if (account == address(0)) {
return;
}
if (excluded) {
_addRewardExclusion(account);
}
uint256 balance = balanceOf(account);
int256 correction = int256(magnifiedRewardsPerShare * balance);
magnifiedRewardCorrections[account] = -correction;
withdrawnRewards[account] = 0;
}
// ==================== Whale Protection ====================
function _applyWhaleProtection(address from, uint256 amount) internal returns (uint256) {
uint256 balance = balanceOf(from);
// Check if user is a whale
if (balance < whaleConfig.whaleThreshold || isLimitExempt[from]) {
return amount;
}
// Check cooldown
require(
block.number >= lastWhaleSell[from] + whaleConfig.sellCooldown,
"Whale sell cooldown active"
);
// Calculate maximum allowed sell
uint256 maxSell = (balance * whaleConfig.maxSellPercent) / 10000;
require(amount <= maxSell, "Whale sell amount exceeds limit");
lastWhaleSell[from] = block.number;
return amount;
}
// ==================== Fee Processing ====================
function _processFeesIfNeeded() internal {
uint256 contractBalance = balanceOf(address(this));
uint256 threshold = (totalSupply() * feeProcessingThreshold) / 100000000; // feeProcessingThreshold in basis points
if (contractBalance >= threshold) {
_processFees(contractBalance);
}
}
function _processFees(uint256 amount) internal {
// Reentrancy protection
require(!processingFees, "Already processing fees");
processingFees = true;
// 1. First burn SELF_BURN portion (0.69%)
uint256 selfBurnAmount = (amount * SELF_BURN_BPS) / TOTAL_BPS;
if (selfBurnAmount > 0) {
super._update(address(this), 0x000000000000000000000000000000000000dEaD, selfBurnAmount);
}
// 2. Calculate remaining amount for swapping to PEPE
uint256 toSwap = amount - selfBurnAmount;
if (toSwap == 0) {
processingFees = false;
return;
}
// 3. Swap all remaining to PEPE
uint256 pepeReceived = _swapTokensForPepe(toSwap);
if (pepeReceived == 0) {
processingFees = false;
return;
}
// 4. Distribute PEPE according to original ratios
// Calculate each portion from received PEPE based on non-self-burn BPS
uint256 nonSelfBurnBPS = TOTAL_BPS - SELF_BURN_BPS; // 6210
uint256 pondPepe = (pepeReceived * POND_BPS) / nonSelfBurnBPS; // 6.9%
uint256 burnPepe = (pepeReceived * PEPE_BURN_BPS) / nonSelfBurnBPS; // 0.69%
uint256 rewardsPepe = (pepeReceived * REWARDS_BPS) / nonSelfBurnBPS; // 0.69%
uint256 devPepe = (pepeReceived * DEV_BPS) / nonSelfBurnBPS; // 0.69%
uint256 artPepe = (pepeReceived * ART_BPS) / nonSelfBurnBPS; // 0.03%
// 5. Distribute PEPE
if (pondPepe > 0) {
pendingPondPepe += pondPepe;
}
uint256 pondSent = _forwardPondPepe();
// PEPE burn (0.69%)
if (burnPepe > 0) {
PEPE.safeTransfer(0x000000000000000000000000000000000000dEaD, burnPepe);
}
// Holder rewards (0.69%)
if (rewardsPepe > 0) {
_distributeRewards(rewardsPepe);
}
// Dev wallet (0.42069%)
if (devPepe > 0) {
PEPE.safeTransfer(devWallet, devPepe);
}
// Art wallet (0.20241%)
if (artPepe > 0) {
PEPE.safeTransfer(artWallet, artPepe);
}
emit FeesProcessed(rewardsPepe, pondSent, devPepe + artPepe);
// Reset reentrancy flag
processingFees = false;
}
function _forwardPondPepe() internal returns (uint256 sent) {
if (pendingPondPepe == 0) {
return 0;
}
if (address(pondManager) == address(0) || pondManager.paused()) {
return 0;
}
sent = pendingPondPepe;
pendingPondPepe = 0;
PEPE.safeTransfer(address(pondManager), sent);
pondManager.addToPond(sent);
}
function _swapTokensForPepe(uint256 tokenAmount) internal virtual returns (uint256) {
address[] memory path = new address[](3);
path[0] = address(this);
path[1] = WETH;
path[2] = address(PEPE);
uint256 pepeBalanceBefore = PEPE.balanceOf(address(this));
// Get expected output amount for slippage protection
uint256[] memory amounts = uniswapV2Router.getAmountsOut(tokenAmount, path);
uint256 expectedPepe = amounts[2];
// Use configurable slippage (default 1%)
uint256 minPepe = expectedPepe - (expectedPepe * maxSlippageBPS / 10000);
uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
tokenAmount, minPepe, path, address(this), block.timestamp + 300
);
return PEPE.balanceOf(address(this)) - pepeBalanceBefore;
}
// ==================== Rewards System ====================
function _distributeRewards(uint256 pepeAmount) internal {
uint256 totalRewards = pepeAmount + pendingRewardsBuffer;
if (totalRewards == 0) {
return;
}
uint256 eligibleSupply = _getEligibleSupply();
if (eligibleSupply == 0) {
pendingRewardsBuffer = totalRewards;
return;
}
pendingRewardsBuffer = 0;
magnifiedRewardsPerShare += (totalRewards * REWARD_MAGNITUDE) / eligibleSupply;
uint256 pepePerToken = (totalRewards * 1e18) / eligibleSupply;
rewardSnapshots.push(
RewardSnapshot({
totalSupplySnapshot: eligibleSupply,
pepePerToken: pepePerToken,
timestamp: block.timestamp
})
);
totalPepeDistributed += totalRewards;
reservedPepeForRewards += totalRewards;
emit RewardSnapshotTaken(rewardSnapshots.length - 1, pepePerToken, eligibleSupply);
}
function _getEligibleSupply() internal view returns (uint256) {
uint256 total = totalSupply();
for (uint256 i = 0; i < rewardExclusionList.length; i++) {
address account = rewardExclusionList[i];
if (excludedFromRewards[account]) {
total -= balanceOf(account);
}
}
return total;
}
function claimRewards() external nonReentrant {
require(!excludedFromRewards[msg.sender], "Excluded from rewards");
require(balanceOf(msg.sender) >= minBalanceForRewards, "Insufficient balance");
require(
block.timestamp >= lastRewardClaim[msg.sender] + rewardClaimCooldown,
"Claim cooldown active"
);
uint256 pending = _calculatePendingRewards(msg.sender);
require(pending > 0, "No rewards available");
require(pending <= reservedPepeForRewards, "Insufficient PEPE reserves");
lastRewardClaim[msg.sender] = block.timestamp;
withdrawnRewards[msg.sender] += pending;
totalPepeClaimed += pending;
reservedPepeForRewards -= pending;
PEPE.safeTransfer(msg.sender, pending);
emit RewardsClaimed(msg.sender, pending);
}
function _accumulativeRewardsOf(address account) internal view returns (uint256) {
int256 corrected = int256(magnifiedRewardsPerShare * balanceOf(account))
+ magnifiedRewardCorrections[account];
if (corrected <= 0) {
return 0;
}
return uint256(corrected) / REWARD_MAGNITUDE;
}
function _calculatePendingRewards(address user) internal view returns (uint256) {
if (excludedFromRewards[user]) {
return 0;
}
uint256 userBalance = balanceOf(user);
if (userBalance < minBalanceForRewards) {
return 0;
}
uint256 accumulative = _accumulativeRewardsOf(user);
uint256 withdrawn = withdrawnRewards[user];
if (accumulative <= withdrawn) {
return 0;
}
return accumulative - withdrawn;
}
function pendingRewards(address user) external view returns (uint256) {
return _calculatePendingRewards(user);
}
// ==================== Admin Functions ====================
function setTaxRate(uint256 rate) external onlyOwner {
require(rate <= MAX_TAX_RATE, "Tax rate too high");
uint256 oldRate = taxRate;
taxRate = rate;
emit TaxRateUpdated(oldRate, rate);
}
function setExcludedFromFees(address account, bool excluded) external onlyOwner {
excludedFromFees[account] = excluded;
}
function setLimitExempt(address account, bool exempt) external onlyOwner {
isLimitExempt[account] = exempt;
isWhaleExempt[account] = exempt;
emit LimitExemptionUpdated(account, exempt);
}
function setExcludedFromRewards(address account, bool excluded) external onlyOwner {
excludedFromRewards[account] = excluded;
_syncRewardExclusion(account, excluded);
emit RewardsExclusionUpdated(account, excluded);
}
function setAMM(address pair, bool value) external onlyOwner {
automatedMarketMakerPairs[pair] = value;
}
function removeLimits() external onlyOwner {
limitsInEffect = false;
}
function setWalletToWalletTransfers(bool disabled) external onlyOwner {
walletToWalletTransfersDisabled = disabled;
}
function setLimits(uint256 maxTx, uint256 maxWallet) external onlyOwner {
require(maxTx >= totalSupply() / 1000, "Max TX too low");
require(maxWallet >= totalSupply() / 100, "Max wallet too low");
maxTxAmount = maxTx;
maxWalletAmount = maxWallet;
}
function setMinBalanceForRewards(uint256 rewardMin) external onlyOwner {
minBalanceForRewards = rewardMin;
}
function setRewardCooldown(uint256 cooldown) external onlyOwner {
rewardClaimCooldown = cooldown;
}
function setPondManager(address newPondManager) external onlyOwner {
require(newPondManager != address(0), "Invalid pond manager");
address oldManager = address(pondManager);
pondManager = IPondManager(newPondManager);
emit PondManagerUpdated(oldManager, newPondManager);
if (oldManager != address(0)) {
excludedFromRewards[oldManager] = false;
_syncRewardExclusion(oldManager, false);
emit RewardsExclusionUpdated(oldManager, false);
}
excludedFromRewards[newPondManager] = true;
_syncRewardExclusion(newPondManager, true);
emit RewardsExclusionUpdated(newPondManager, true);
if (pendingPondPepe > 0) {
_forwardPondPepe();
}
}
// ==================== MEV Protection Admin ====================
function setMEVProtection(bool enabled, uint256 sandwichBlocks) external onlyOwner {
mevProtectionEnabled = enabled;
sandwichProtectionBlocks = sandwichBlocks;
}
function setMaxSlippage(uint256 newSlippageBPS) external onlyOwner {
require(newSlippageBPS >= 10 && newSlippageBPS <= 500, "Slippage must be 0.1% to 5%");
maxSlippageBPS = newSlippageBPS;
}
// ==================== Whale Protection Admin ====================
function setWhaleConfig(
uint256 threshold,
uint256 maxSellPercent,
uint256 cooldownBlocks,
uint256 progressiveTax
) external onlyOwner {
require(maxSellPercent <= 10000, "Max sell too high");
require(progressiveTax <= 1000, "Progressive tax too high");
whaleConfig.whaleThreshold = threshold;
whaleConfig.maxSellPercent = maxSellPercent;
whaleConfig.sellCooldown = cooldownBlocks;
whaleConfig.progressiveTaxRate = progressiveTax;
}
function setWhaleExempt(address account, bool exempt) external onlyOwner {
isWhaleExempt[account] = exempt;
}
function batchSetWhaleExempt(address[] calldata accounts, bool exempt) external onlyOwner {
for (uint256 i = 0; i < accounts.length; i++) {
isWhaleExempt[accounts[i]] = exempt;
}
}
function setFeeProcessingThreshold(uint256 newThreshold) external onlyOwner {
require(
newThreshold >= 100 && newThreshold <= 100000,
"Threshold must be between 0.0001% and 0.1%"
);
feeProcessingThreshold = newThreshold;
}
function setDevWallet(address newDevWallet) external onlyOwner {
require(newDevWallet != address(0), "Invalid dev wallet");
address oldWallet = devWallet;
devWallet = newDevWallet;
// Update fee exclusion
excludedFromFees[oldWallet] = false;
excludedFromFees[newDevWallet] = true;
excludedFromRewards[oldWallet] = false;
_syncRewardExclusion(oldWallet, false);
emit RewardsExclusionUpdated(oldWallet, false);
excludedFromRewards[newDevWallet] = true;
_syncRewardExclusion(newDevWallet, true);
emit RewardsExclusionUpdated(newDevWallet, true);
}
function setArtWallet(address newArtWallet) external onlyOwner {
require(newArtWallet != address(0), "Invalid art wallet");
address oldWallet = artWallet;
artWallet = newArtWallet;
// Update fee exclusion
excludedFromFees[oldWallet] = false;
excludedFromFees[newArtWallet] = true;
excludedFromRewards[oldWallet] = false;
_syncRewardExclusion(oldWallet, false);
emit RewardsExclusionUpdated(oldWallet, false);
excludedFromRewards[newArtWallet] = true;
_syncRewardExclusion(newArtWallet, true);
emit RewardsExclusionUpdated(newArtWallet, true);
}
function setPepeToken(address newPepe) external onlyOwner {
require(newPepe != address(0), "Invalid PEPE address");
require(newPepe != address(this), "Cannot be self");
PEPE = IERC20(newPepe);
}
function manualProcessFees() external onlyOwner {
uint256 balance = balanceOf(address(this));
if (balance > 0) {
_processFees(balance);
}
}
function depositExternalPondPepe(uint256 amount) external onlyOwner {
require(amount > 0, "Amount zero");
require(PEPE.balanceOf(address(this)) >= amount, "PEPE not received");
pendingPondPepe += amount;
uint256 forwarded = _forwardPondPepe();
emit ExternalPondPepeDeposited(msg.sender, amount, forwarded);
}
function depositExternalRewardsPepe(uint256 amount) external onlyOwner {
require(amount > 0, "Amount zero");
require(PEPE.balanceOf(address(this)) >= amount, "PEPE not received");
_distributeRewards(amount);
emit ExternalRewardsPepeDeposited(msg.sender, amount);
}
function flushPendingPondPepe() external onlyOwner {
require(address(pondManager) != address(0), "Pond manager not set");
require(pendingPondPepe > 0, "No pending pond PEPE");
require(!pondManager.paused(), "Pond manager paused");
uint256 forwarded = _forwardPondPepe();
require(forwarded > 0, "Forward failed");
}
function pause() external onlyOwner {
_pause();
}
function unpause() external onlyOwner {
_unpause();
}
// ==================== View Functions ====================
function getRewardSnapshots() external view returns (RewardSnapshot[] memory) {
return rewardSnapshots;
}
function getRewardsReserveInfo()
external
view
returns (
uint256 totalReserved,
uint256 totalDistributed,
uint256 totalClaimed,
uint256 contractPepeBalance
)
{
return (
reservedPepeForRewards,
totalPepeDistributed,
totalPepeClaimed,
PEPE.balanceOf(address(this))
);
}
function isProcessingFees() external view returns (bool) {
return processingFees;
}
function getUserBasicStats(address user)
external
view
returns (uint256 balance, uint256 pendingRewardsAmount, bool canClaim)
{
balance = balanceOf(user);
pendingRewardsAmount = _calculatePendingRewards(user);
canClaim = block.timestamp >= lastRewardClaim[user] + rewardClaimCooldown
&& pendingRewardsAmount > 0 && balance >= minBalanceForRewards;
}
receive() external payable { }
}
"
},
"@openzeppelin/contracts/access/Ownable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
"
},
"@openzeppelin/contracts/utils/Pausable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
"
},
"@openzeppelin/contracts/utils/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
"
},
"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}
"
},
"@openzeppelin/contracts/token/ERC20/ERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* Both values are immutable: they can only be set once during construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/// @inheritdoc IERC20
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/// @inheritdoc IERC20
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/// @inheritdoc IERC20
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, v
Submitted on: 2025-09-28 20:29:03
Comments
Log in to comment.
No comments yet.