Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/oracles/MachineShareOracle.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {Initializable} from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import {IHubCoreFactory} from "@makina-core/interfaces/IHubCoreFactory.sol";
import {IMachine} from "@makina-core/interfaces/IMachine.sol";
import {IOracleRegistry} from "@makina-core/interfaces/IOracleRegistry.sol";
import {IPreDepositVault} from "@makina-core/interfaces/IPreDepositVault.sol";
import {IHubCoreRegistry} from "@makina-core/interfaces/IHubCoreRegistry.sol";
import {DecimalsUtils} from "@makina-core/libraries/DecimalsUtils.sol";
import {MachineUtils} from "@makina-core/libraries/MachineUtils.sol";
import {MakinaContext} from "@makina-core/utils/MakinaContext.sol";
import {IMachineShareOracle} from "../interfaces/IMachineShareOracle.sol";
import {IShareTokenOwner} from "../interfaces/IShareTokenOwner.sol";
import {CoreErrors} from "../libraries/Errors.sol";
contract MachineShareOracle is MakinaContext, Initializable, IMachineShareOracle {
using Math for uint256;
// @custom:storage-location erc7201:makina.storage.MachineShareOracle
struct MachineShareOracleStorage {
address _shareOwner;
bool _isShareOwnerPdv;
uint8 _decimals;
uint256 _scalingNumerator;
uint256 _shareTokenDecimalsOffset;
string _description;
}
// keccak256(abi.encode(uint256(keccak256("makina.storage.MachineShareOracle")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant MachineShareOracleStorageLocation =
0x4f70fa92dc3700b8f04f54ea7fbeb33f50a8cec0cd9f676fee937dccebe28100;
function _getMachineShareOracleStorage() internal pure returns (MachineShareOracleStorage storage $) {
assembly {
$.slot := MachineShareOracleStorageLocation
}
}
constructor(address coreRegistry) MakinaContext(coreRegistry) {
_disableInitializers();
}
/// @inheritdoc IMachineShareOracle
function initialize(address _shareOwner, uint8 _decimals) external initializer {
MachineShareOracleStorage storage $ = _getMachineShareOracleStorage();
address coreFactory = IHubCoreRegistry(registry).coreFactory();
if (IHubCoreFactory(coreFactory).isPreDepositVault(_shareOwner)) {
if (IPreDepositVault(_shareOwner).migrated()) {
revert CoreErrors.Migrated();
}
$._isShareOwnerPdv = true;
} else if (!IHubCoreFactory(coreFactory).isMachine(_shareOwner)) {
revert InvalidShareOwner();
}
$._shareOwner = _shareOwner;
address shareToken = IShareTokenOwner(_shareOwner).shareToken();
address accountingToken = IShareTokenOwner(_shareOwner).accountingToken();
uint8 atDecimals = DecimalsUtils._getDecimals(accountingToken);
if (_decimals < atDecimals) {
revert CoreErrors.InvalidDecimals();
}
$._decimals = _decimals;
$._scalingNumerator = 10 ** (_decimals - atDecimals);
$._shareTokenDecimalsOffset = DecimalsUtils.SHARE_TOKEN_DECIMALS - atDecimals;
$._description =
string.concat(IERC20Metadata(shareToken).symbol(), " / ", IERC20Metadata(accountingToken).symbol());
}
/// @inheritdoc IMachineShareOracle
function decimals() external view override returns (uint8) {
return _getMachineShareOracleStorage()._decimals;
}
/// @inheritdoc IMachineShareOracle
function description() external view override returns (string memory) {
return _getMachineShareOracleStorage()._description;
}
/// @inheritdoc IMachineShareOracle
function shareOwner() public view override returns (address) {
MachineShareOracleStorage storage $ = _getMachineShareOracleStorage();
return !$._isShareOwnerPdv || !IPreDepositVault($._shareOwner).migrated()
? $._shareOwner
: IPreDepositVault($._shareOwner).machine();
}
/// @inheritdoc IMachineShareOracle
function getSharePrice() external view override returns (uint256) {
MachineShareOracleStorage storage $ = _getMachineShareOracleStorage();
uint256 stSupply = IERC20Metadata(IShareTokenOwner($._shareOwner).shareToken()).totalSupply();
uint256 sharePrice;
if ($._isShareOwnerPdv && !IPreDepositVault($._shareOwner).migrated()) {
address depositToken = IPreDepositVault($._shareOwner).depositToken();
address accountingToken = IShareTokenOwner($._shareOwner).accountingToken();
uint256 price_d_a =
IOracleRegistry(IHubCoreRegistry(registry).oracleRegistry()).getPrice(depositToken, accountingToken);
uint256 dtUnit = 10 ** DecimalsUtils._getDecimals(depositToken);
uint256 dtBal = IERC20Metadata(depositToken).balanceOf($._shareOwner);
sharePrice = DecimalsUtils.SHARE_TOKEN_UNIT.mulDiv(
(dtBal * price_d_a) + dtUnit, (stSupply + 10 ** $._shareTokenDecimalsOffset) * dtUnit
);
} else {
address machine = $._isShareOwnerPdv ? IPreDepositVault($._shareOwner).machine() : $._shareOwner;
uint256 aum = IMachine(machine).lastTotalAum();
sharePrice = MachineUtils.getSharePrice(aum, stSupply, $._shareTokenDecimalsOffset);
}
return $._scalingNumerator * sharePrice;
}
/// @inheritdoc IMachineShareOracle
function notifyPdvMigration() external override {
MachineShareOracleStorage storage $ = _getMachineShareOracleStorage();
if (!$._isShareOwnerPdv) {
revert CoreErrors.NotPreDepositVault();
}
address newShareOwner = IPreDepositVault($._shareOwner).machine();
emit ShareOwnerMigrated($._shareOwner, newShareOwner);
$._shareOwner = newShareOwner;
$._isShareOwnerPdv = false;
}
}
"
},
"lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
"
},
"lib/openzeppelin-contracts/contracts/proxy/utils/Initializable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reinitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
*
* NOTE: Consider following the ERC-7201 formula to derive storage locations.
*/
function _initializableStorageSlot() internal pure virtual returns (bytes32) {
return INITIALIZABLE_STORAGE;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
bytes32 slot = _initializableStorageSlot();
assembly {
$.slot := slot
}
}
}
"
},
"lib/makina-core/src/interfaces/IHubCoreFactory.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {ICaliber} from "./ICaliber.sol";
import {IMachine} from "./IMachine.sol";
import {IPreDepositVault} from "./IPreDepositVault.sol";
import {IMakinaGovernable} from "./IMakinaGovernable.sol";
import {IBridgeAdapterFactory} from "./IBridgeAdapterFactory.sol";
interface IHubCoreFactory is IBridgeAdapterFactory {
event MachineCreated(address indexed machine, address indexed shareToken);
event PreDepositVaultCreated(address indexed preDepositVault, address indexed shareToken);
event ShareTokenCreated(address indexed shareToken);
/// @notice Address => Whether this is a PreDepositVault instance deployed by this factory.
function isPreDepositVault(address preDepositVault) external view returns (bool);
/// @notice Address => Whether this is a Machine instance deployed by this factory.
function isMachine(address machine) external view returns (bool);
/// @notice Deploys a new PreDepositVault instance.
/// @param params The initialization parameters.
/// @param depositToken The address of the deposit token.
/// @param accountingToken The address of the accounting token.
/// @param tokenName The name of the share token.
/// @param tokenSymbol The symbol of the share token.
/// @return preDepositVault The address of the deployed PreDepositVault instance.
function createPreDepositVault(
IPreDepositVault.PreDepositVaultInitParams calldata params,
address depositToken,
address accountingToken,
string memory tokenName,
string memory tokenSymbol
) external returns (address preDepositVault);
/// @notice Deploys a new Machine instance and migrates an existing PreDepositVault instance to it.
/// @param mParams The machine initialization parameters.
/// @param cParams The caliber initialization parameters.
/// @param mgParams The makina governable initialization parameters.
/// @param preDepositVault The address of the PreDepositVault instance to migrate.
/// @param salt The salt used to deploy the Hub Caliber deterministically.
/// @return machine The address of the deployed Machine instance.
function createMachineFromPreDeposit(
IMachine.MachineInitParams calldata mParams,
ICaliber.CaliberInitParams calldata cParams,
IMakinaGovernable.MakinaGovernableInitParams calldata mgParams,
address preDepositVault,
bytes32 salt
) external returns (address machine);
/// @notice Deploys a new Machine instance.
/// @param mParams The machine initialization parameters.
/// @param cParams The caliber initialization parameters.
/// @param mgParams The makina governable initialization parameters.
/// @param accountingToken The address of the accounting token.
/// @param tokenName The name of the share token.
/// @param tokenSymbol The symbol of the share token.
/// @param salt The salt used to deploy the Hub Caliber deterministically.
/// @return machine The address of the deployed Machine instance.
function createMachine(
IMachine.MachineInitParams calldata mParams,
ICaliber.CaliberInitParams calldata cParams,
IMakinaGovernable.MakinaGovernableInitParams calldata mgParams,
address accountingToken,
string memory tokenName,
string memory tokenSymbol,
bytes32 salt
) external returns (address machine);
}
"
},
"lib/makina-core/src/interfaces/IMachine.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {EnumerableMap} from "@openzeppelin/contracts/utils/structs/EnumerableMap.sol";
import {GuardianSignature} from "@wormhole/sdk/libraries/VaaLib.sol";
import {IMachineEndpoint} from "./IMachineEndpoint.sol";
interface IMachine is IMachineEndpoint {
event CaliberStaleThresholdChanged(uint256 indexed oldThreshold, uint256 indexed newThreshold);
event Deposit(address indexed sender, address indexed receiver, uint256 assets, uint256 shares);
event DepositorChanged(address indexed oldDepositor, address indexed newDepositor);
event FeeManagerChanged(address indexed oldFeeManager, address indexed newFeeManager);
event FeeMintCooldownChanged(uint256 indexed oldFeeMintCooldown, uint256 indexed newFeeMintCooldown);
event FeesMinted(uint256 shares);
event MaxFixedFeeAccrualRateChanged(uint256 indexed oldMaxAccrualRate, uint256 indexed newMaxAccrualRate);
event MaxPerfFeeAccrualRateChanged(uint256 indexed oldMaxAccrualRate, uint256 indexed newMaxAccrualRate);
event Redeem(address indexed owner, address indexed receiver, uint256 assets, uint256 shares);
event RedeemerChanged(address indexed oldRedeemer, address indexed newRedeemer);
event ShareLimitChanged(uint256 indexed oldShareLimit, uint256 indexed newShareLimit);
event SpokeBridgeAdapterSet(uint256 indexed chainId, uint256 indexed bridgeId, address indexed adapter);
event SpokeCaliberMailboxSet(uint256 indexed chainId, address indexed caliberMailbox);
event TotalAumUpdated(uint256 totalAum);
event TransferToCaliber(uint256 indexed chainId, address indexed token, uint256 amount);
/// @notice Initialization parameters.
/// @param initialDepositor The address of the initial depositor.
/// @param initialRedeemer The address of the initial redeemer.
/// @param initialFeeManager The address of the initial fee manager.
/// @param initialCaliberStaleThreshold The caliber accounting staleness threshold in seconds.
/// @param initialMaxFixedFeeAccrualRate The maximum fixed fee accrual rate per second, 1e18 = 100%.
/// @param initialMaxPerfFeeAccrualRate The maximum performance fee accrual rate per second, 1e18 = 100%.
/// @param initialFeeMintCooldown The minimum time to be elapsed between two fee minting events in seconds.
/// @param initialShareLimit The share cap value.
struct MachineInitParams {
address initialDepositor;
address initialRedeemer;
address initialFeeManager;
uint256 initialCaliberStaleThreshold;
uint256 initialMaxFixedFeeAccrualRate;
uint256 initialMaxPerfFeeAccrualRate;
uint256 initialFeeMintCooldown;
uint256 initialShareLimit;
}
/// @dev Internal state structure for a spoke caliber data.
/// @param mailbox The foreign address of the spoke caliber mailbox.
/// @param bridgeAdapters The mapping of bridge IDs to their corresponding adapters.
/// @param timestamp The timestamp of the last accounting.
/// @param netAum The net AUM of the spoke caliber.
/// @param positions The list of positions of the spoke caliber, each encoded as abi.encode(positionId, value).
/// @param baseTokens The list of base tokens of the spoke caliber, each encoded as abi.encode(token, value).
/// @param caliberBridgesIn The mapping of spoke caliber incoming bridge amounts.
/// @param caliberBridgesOut The mapping of spoke caliber outgoing bridge amounts.
/// @param machineBridgesIn The mapping of machine incoming bridge amounts.
/// @param machineBridgesOut The mapping of machine outgoing bridge amounts.
struct SpokeCaliberData {
address mailbox;
mapping(uint16 bridgeId => address adapter) bridgeAdapters;
uint256 timestamp;
uint256 netAum;
bytes[] positions;
bytes[] baseTokens;
EnumerableMap.AddressToUintMap caliberBridgesIn;
EnumerableMap.AddressToUintMap caliberBridgesOut;
EnumerableMap.AddressToUintMap machineBridgesIn;
EnumerableMap.AddressToUintMap machineBridgesOut;
}
/// @notice Initializer of the contract.
/// @param mParams The machine initialization parameters.
/// @param mgParams The makina governable initialization parameters.
/// @param _preDepositVault The address of the pre-deposit vault.
/// @param _shareToken The address of the share token.
/// @param _accountingToken The address of the accounting token.
/// @param _hubCaliber The address of the hub caliber.
function initialize(
MachineInitParams calldata mParams,
MakinaGovernableInitParams calldata mgParams,
address _preDepositVault,
address _shareToken,
address _accountingToken,
address _hubCaliber
) external;
/// @notice Address of the Wormhole Core Bridge.
function wormhole() external view returns (address);
/// @notice Address of the depositor.
function depositor() external view returns (address);
/// @notice Address of the redeemer.
function redeemer() external view returns (address);
/// @notice Address of the share token.
function shareToken() external view returns (address);
/// @notice Address of the accounting token.
function accountingToken() external view returns (address);
/// @notice Address of the hub caliber.
function hubCaliber() external view returns (address);
/// @notice Address of the fee manager.
function feeManager() external view returns (address);
/// @notice Maximum duration a caliber can remain unaccounted for before it is considered stale.
function caliberStaleThreshold() external view returns (uint256);
/// @notice Maximum fixed fee accrual rate per second used to compute an upper bound on shares to be minted, 1e18 = 100%.
function maxFixedFeeAccrualRate() external view returns (uint256);
/// @notice Maximum performance fee accrual rate per second used to compute an upper bound on shares to be minted, 1e18 = 100%.
function maxPerfFeeAccrualRate() external view returns (uint256);
/// @notice Minimum time to be elapsed between two fee minting events.
function feeMintCooldown() external view returns (uint256);
/// @notice Share token supply limit that cannot be exceeded by new deposits.
function shareLimit() external view returns (uint256);
/// @notice Maximum amount of shares that can currently be minted through asset deposits.
function maxMint() external view returns (uint256);
/// @notice Maximum amount of accounting tokens that can currently be withdrawn through share redemptions.
function maxWithdraw() external view returns (uint256);
/// @notice Last total machine AUM.
function lastTotalAum() external view returns (uint256);
/// @notice Timestamp of the last global machine accounting.
function lastGlobalAccountingTime() external view returns (uint256);
/// @notice Token => Is the token an idle token.
function isIdleToken(address token) external view returns (bool);
/// @notice Number of calibers associated with the machine.
function getSpokeCalibersLength() external view returns (uint256);
/// @notice Spoke caliber index => Spoke Chain ID.
function getSpokeChainId(uint256 idx) external view returns (uint256);
/// @notice Spoke Chain ID => Spoke caliber's AUM, individual positions values and accounting timestamp.
function getSpokeCaliberDetailedAum(uint256 chainId)
external
view
returns (uint256 aum, bytes[] memory positions, bytes[] memory baseTokens, uint256 timestamp);
/// @notice Spoke Chain ID => Spoke Caliber Mailbox Address.
function getSpokeCaliberMailbox(uint256 chainId) external view returns (address);
/// @notice Spoke Chain ID => Spoke Bridge ID => Spoke Bridge Adapter.
function getSpokeBridgeAdapter(uint256 chainId, uint16 bridgeId) external view returns (address);
/// @notice Returns the amount of shares that the Machine would exchange for the amount of accounting tokens provided.
/// @param assets The amount of accounting tokens.
/// @return shares The amount of shares.
function convertToShares(uint256 assets) external view returns (uint256);
/// @notice Returns the amount of accounting tokens that the Machine would exchange for the amount of shares provided.
/// @param shares The amount of shares.
/// @return assets The amount of accounting tokens.
function convertToAssets(uint256 shares) external view returns (uint256);
/// @notice Initiates a token transfers to the hub caliber.
/// @param token The address of the token to transfer.
/// @param amount The amount of token to transfer.
function transferToHubCaliber(address token, uint256 amount) external;
/// @notice Initiates a token transfers to the spoke caliber.
/// @param bridgeId The ID of the bridge to use for the transfer.
/// @param chainId The foreign EVM chain ID of the spoke caliber.
/// @param token The address of the token to transfer.
/// @param amount The amount of token to transfer.
/// @param minOutputAmount The minimum output amount expected from the transfer.
function transferToSpokeCaliber(
uint16 bridgeId,
uint256 chainId,
address token,
uint256 amount,
uint256 minOutputAmount
) external;
/// @notice Updates the total AUM of the machine.
/// @return totalAum The updated total AUM.
function updateTotalAum() external returns (uint256);
/// @notice Deposits accounting tokens into the machine and mints shares to the receiver.
/// @param assets The amount of accounting tokens to deposit.
/// @param receiver The receiver of minted shares.
/// @param minShares The minimum amount of shares to be minted.
/// @return shares The amount of shares minted.
function deposit(uint256 assets, address receiver, uint256 minShares) external returns (uint256);
/// @notice Redeems shares from the machine and transfers accounting tokens to the receiver.
/// @param shares The amount of shares to redeem.
/// @param receiver The receiver of the accounting tokens.
/// @param minAssets The minimum amount of accounting tokens to be transferred.
/// @return assets The amount of accounting tokens transferred.
function redeem(uint256 shares, address receiver, uint256 minAssets) external returns (uint256);
/// @notice Updates spoke caliber accounting data using Wormhole Cross-Chain Queries (CCQ).
/// @dev Validates the Wormhole CCQ response and guardian signatures before updating state.
/// @param response The Wormhole CCQ response payload containing the accounting data.
/// @param signatures The array of Wormhole guardians signatures attesting to the validity of the response.
function updateSpokeCaliberAccountingData(bytes memory response, GuardianSignature[] memory signatures) external;
/// @notice Registers a spoke caliber mailbox and related bridge adapters.
/// @param chainId The foreign EVM chain ID of the spoke caliber.
/// @param spokeCaliberMailbox The address of the spoke caliber mailbox.
/// @param bridges The list of bridges supported with the spoke caliber.
/// @param adapters The list of corresponding adapters for each bridge. Must be the same length as `bridges`.
function setSpokeCaliber(
uint256 chainId,
address spokeCaliberMailbox,
uint16[] calldata bridges,
address[] calldata adapters
) external;
/// @notice Registers a spoke bridge adapter.
/// @param chainId The foreign EVM chain ID of the adapter.
/// @param bridgeId The ID of
Submitted on: 2025-09-29 13:35:23
Comments
Log in to comment.
No comments yet.