LeverageRouter

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/periphery/LeverageRouter.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

// Dependency imports
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IMorpho} from "@morpho-blue/interfaces/IMorpho.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ReentrancyGuardTransient} from "@openzeppelin/contracts/utils/ReentrancyGuardTransient.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

// Internal imports
import {ILendingAdapter} from "../interfaces/ILendingAdapter.sol";
import {ILeverageManager} from "../interfaces/ILeverageManager.sol";
import {ILeverageToken} from "../interfaces/ILeverageToken.sol";
import {ILeverageRouter} from "../interfaces/periphery/ILeverageRouter.sol";
import {IVeloraAdapter} from "../interfaces/periphery/IVeloraAdapter.sol";
import {IMulticallExecutor} from "../interfaces/periphery/IMulticallExecutor.sol";
import {ActionData} from "../types/DataTypes.sol";

/**
 * @dev The LeverageRouter contract is an immutable periphery contract that facilitates the use of flash loans and swaps
 * to deposit and redeem equity from LeverageTokens.
 *
 * The high-level deposit flow is as follows:
 *   1. The sender calls `deposit` with the amount of collateral from the sender to deposit, the amount of debt to flash loan
 *      (which will be swapped to collateral), the minimum amount of shares to receive, and the calldata to execute for
 *      the swap of the flash loaned debt to collateral
 *   2. The LeverageRouter will flash loan the debt asset amount and execute the calldata to swap it to collateral
 *   3. The LeverageRouter will use the collateral from the swapped debt and the collateral from the sender for the deposit
 *      into the LeverageToken, receiving LeverageToken shares and debt in return
 *   4. The LeverageRouter will use the debt received from the deposit to repay the flash loan
 *   6. The LeverageRouter will transfer the LeverageToken shares and any surplus debt assets to the sender
 *
 * The high-level redeem flow is the same as the deposit flow, but in reverse.
 *
 * @custom:contact security@seamlessprotocol.com
 */
contract LeverageRouter is ILeverageRouter, ReentrancyGuardTransient {
    /// @inheritdoc ILeverageRouter
    ILeverageManager public immutable leverageManager;

    /// @inheritdoc ILeverageRouter
    IMorpho public immutable morpho;

    /// @notice Creates a new LeverageRouter
    /// @param _leverageManager The LeverageManager contract
    /// @param _morpho The Morpho core protocol contract
    constructor(ILeverageManager _leverageManager, IMorpho _morpho) {
        leverageManager = _leverageManager;
        morpho = _morpho;
    }

    /// @inheritdoc ILeverageRouter
    function convertEquityToCollateral(ILeverageToken token, uint256 equityInCollateralAsset)
        public
        view
        returns (uint256 collateral)
    {
        uint256 collateralRatio = leverageManager.getLeverageTokenState(token).collateralRatio;
        ILendingAdapter lendingAdapter = leverageManager.getLeverageTokenLendingAdapter(token);
        uint256 baseRatio = leverageManager.BASE_RATIO();

        if (lendingAdapter.getCollateral() == 0 && lendingAdapter.getDebt() == 0) {
            uint256 initialCollateralRatio = leverageManager.getLeverageTokenInitialCollateralRatio(token);
            collateral = Math.mulDiv(
                equityInCollateralAsset, initialCollateralRatio, initialCollateralRatio - baseRatio, Math.Rounding.Ceil
            );
        } else if (collateralRatio == type(uint256).max) {
            collateral = equityInCollateralAsset;
        } else {
            collateral =
                Math.mulDiv(equityInCollateralAsset, collateralRatio, collateralRatio - baseRatio, Math.Rounding.Ceil);
        }

        return collateral;
    }

    /// @inheritdoc ILeverageRouter
    function previewDeposit(ILeverageToken token, uint256 collateralFromSender)
        external
        view
        returns (ActionData memory previewData)
    {
        uint256 collateral = convertEquityToCollateral(token, collateralFromSender);
        return leverageManager.previewDeposit(token, collateral);
    }

    /// @inheritdoc ILeverageRouter
    function deposit(
        ILeverageToken leverageToken,
        uint256 collateralFromSender,
        uint256 flashLoanAmount,
        uint256 minShares,
        IMulticallExecutor multicallExecutor,
        IMulticallExecutor.Call[] calldata swapCalls
    ) external nonReentrant {
        bytes memory depositData = abi.encode(
            DepositParams({
                sender: msg.sender,
                leverageToken: leverageToken,
                collateralFromSender: collateralFromSender,
                minShares: minShares,
                multicallExecutor: multicallExecutor,
                swapCalls: swapCalls
            })
        );

        morpho.flashLoan(
            address(leverageManager.getLeverageTokenDebtAsset(leverageToken)),
            flashLoanAmount,
            abi.encode(MorphoCallbackData({action: LeverageRouterAction.Deposit, data: depositData}))
        );
    }

    /// @inheritdoc ILeverageRouter
    function redeem(
        ILeverageToken token,
        uint256 shares,
        uint256 minCollateralForSender,
        IMulticallExecutor multicallExecutor,
        IMulticallExecutor.Call[] calldata swapCalls
    ) external nonReentrant {
        uint256 debtRequired = leverageManager.previewRedeem(token, shares).debt;

        bytes memory redeemData = abi.encode(
            RedeemParams({
                sender: msg.sender,
                leverageToken: token,
                shares: shares,
                minCollateralForSender: minCollateralForSender,
                multicallExecutor: multicallExecutor,
                swapCalls: swapCalls
            })
        );

        morpho.flashLoan(
            address(leverageManager.getLeverageTokenDebtAsset(token)),
            debtRequired,
            abi.encode(MorphoCallbackData({action: LeverageRouterAction.Redeem, data: redeemData}))
        );
    }

    /// @inheritdoc ILeverageRouter
    function redeemWithVelora(
        ILeverageToken token,
        uint256 shares,
        uint256 minCollateralForSender,
        IVeloraAdapter veloraAdapter,
        address augustus,
        IVeloraAdapter.Offsets calldata offsets,
        bytes calldata swapData
    ) external nonReentrant {
        uint256 debtRequired = leverageManager.previewRedeem(token, shares).debt;

        bytes memory redeemData = abi.encode(
            RedeemWithVeloraParams({
                sender: msg.sender,
                leverageToken: token,
                shares: shares,
                minCollateralForSender: minCollateralForSender,
                veloraAdapter: veloraAdapter,
                augustus: augustus,
                offsets: offsets,
                swapData: swapData
            })
        );

        morpho.flashLoan(
            address(leverageManager.getLeverageTokenDebtAsset(token)),
            debtRequired,
            abi.encode(MorphoCallbackData({action: LeverageRouterAction.RedeemWithVelora, data: redeemData}))
        );
    }

    /// @notice Morpho flash loan callback function
    /// @param loanAmount Amount of asset flash loaned
    /// @param data Encoded data passed to `morpho.flashLoan`
    function onMorphoFlashLoan(uint256 loanAmount, bytes calldata data) external {
        if (msg.sender != address(morpho)) revert Unauthorized();

        MorphoCallbackData memory callbackData = abi.decode(data, (MorphoCallbackData));

        if (callbackData.action == LeverageRouterAction.Deposit) {
            DepositParams memory params = abi.decode(callbackData.data, (DepositParams));
            _depositAndRepayMorphoFlashLoan(params, loanAmount);
        } else if (callbackData.action == LeverageRouterAction.Redeem) {
            RedeemParams memory params = abi.decode(callbackData.data, (RedeemParams));
            _redeemAndRepayMorphoFlashLoan(params, loanAmount);
        } else if (callbackData.action == LeverageRouterAction.RedeemWithVelora) {
            RedeemWithVeloraParams memory params = abi.decode(callbackData.data, (RedeemWithVeloraParams));
            _redeemWithVeloraAndRepayMorphoFlashLoan(params, loanAmount);
        }
    }

    /// @notice Executes the deposit into a LeverageToken by flash loaning the debt asset, swapping it to collateral,
    /// depositing into the LeverageToken with the sender's collateral, and using the resulting debt to repay the flash loan.
    /// Any surplus debt assets after repaying the flash loan are given to the sender.
    /// @param params Params for the deposit into a LeverageToken
    /// @param debtLoan Amount of debt asset flash loaned
    function _depositAndRepayMorphoFlashLoan(DepositParams memory params, uint256 debtLoan) internal {
        IERC20 collateralAsset = leverageManager.getLeverageTokenCollateralAsset(params.leverageToken);
        IERC20 debtAsset = leverageManager.getLeverageTokenDebtAsset(params.leverageToken);

        // Transfer the collateral from the sender for the deposit
        // slither-disable-next-line arbitrary-send-erc20
        SafeERC20.safeTransferFrom(collateralAsset, params.sender, address(this), params.collateralFromSender);

        // Swap the debt asset received from the flash loan to the collateral asset, used to deposit into the LeverageToken
        SafeERC20.safeTransfer(debtAsset, address(params.multicallExecutor), debtLoan);

        IERC20[] memory tokens = new IERC20[](2);
        tokens[0] = collateralAsset;
        tokens[1] = debtAsset;
        params.multicallExecutor.multicallAndSweep(params.swapCalls, tokens);

        // The sum of the collateral from the swap and the collateral from the sender
        uint256 totalCollateral = IERC20(collateralAsset).balanceOf(address(this));

        // Use the collateral from the swap and the collateral from the sender for the deposit into the LeverageToken
        SafeERC20.forceApprove(collateralAsset, address(leverageManager), totalCollateral);

        uint256 shares = leverageManager.deposit(params.leverageToken, totalCollateral, params.minShares).shares;

        // Transfer any surplus debt assets to the sender
        uint256 debtBalance = debtAsset.balanceOf(address(this));
        if (debtLoan < debtBalance) {
            SafeERC20.safeTransfer(debtAsset, params.sender, debtBalance - debtLoan);
        }

        // Transfer shares received from the deposit to the deposit sender
        SafeERC20.safeTransfer(params.leverageToken, params.sender, shares);

        // Approve morpho to transfer debt assets to repay the flash loan
        // Note: if insufficient debt is available to repay the flash loan, the transaction will revert when Morpho
        // attempts to transfer the debt assets to repay the flash loan
        SafeERC20.forceApprove(debtAsset, address(morpho), debtLoan);
    }

    /// @notice Executes the redeem from a LeverageToken by flash loaning the debt asset, swapping the collateral asset
    /// to the debt asset using arbitrary calldata, using the resulting debt to repay the flash loan, and transferring
    /// the remaining collateral asset and debt assets to the sender
    /// @param params Params for the redeem from a LeverageToken, using arbitrary calldata for the swap
    /// @param debtLoanAmount Amount of debt asset flash loaned
    function _redeemAndRepayMorphoFlashLoan(RedeemParams memory params, uint256 debtLoanAmount) internal {
        IERC20 collateralAsset = leverageManager.getLeverageTokenCollateralAsset(params.leverageToken);
        IERC20 debtAsset = leverageManager.getLeverageTokenDebtAsset(params.leverageToken);

        // Transfer the shares from the sender
        // slither-disable-next-line arbitrary-send-erc20
        SafeERC20.safeTransferFrom(params.leverageToken, params.sender, address(this), params.shares);

        // Use the debt from the flash loan to redeem the shares from the sender
        SafeERC20.forceApprove(debtAsset, address(leverageManager), debtLoanAmount);
        // slither-disable-next-line unused-return
        uint256 collateralWithdrawn =
            leverageManager.redeem(params.leverageToken, params.shares, params.minCollateralForSender).collateral;

        // Swap the collateral asset received from the redeem to the debt asset, used to repay the flash loan.
        SafeERC20.safeTransfer(collateralAsset, address(params.multicallExecutor), collateralWithdrawn);

        IERC20[] memory tokens = new IERC20[](2);
        tokens[0] = collateralAsset;
        tokens[1] = debtAsset;
        params.multicallExecutor.multicallAndSweep(params.swapCalls, tokens);

        // The remaining collateral after the arbitrary swap calls is available for the sender
        uint256 collateralForSender = collateralAsset.balanceOf(address(this));

        // The remaining debt after the arbitrary swap calls is available for the sender, minus
        // the amount of debt for repaying the flash loan
        uint256 debtBalance = debtAsset.balanceOf(address(this));
        uint256 debtForSender = debtBalance > debtLoanAmount ? debtBalance - debtLoanAmount : 0;

        // Check slippage on collateral the sender receives
        if (collateralForSender < params.minCollateralForSender) {
            revert CollateralSlippageTooHigh(collateralForSender, params.minCollateralForSender);
        }

        // Transfer remaining collateral to the sender
        if (collateralForSender > 0) {
            SafeERC20.safeTransfer(collateralAsset, params.sender, collateralForSender);
        }

        // Transfer any remaining debt assets to the sender
        if (debtForSender > 0) {
            SafeERC20.safeTransfer(debtAsset, params.sender, debtForSender);
        }

        // Approve Morpho to spend the debt asset to repay the flash loan
        SafeERC20.forceApprove(debtAsset, address(morpho), debtLoanAmount);
    }

    /// @notice Executes the redeem from a LeverageToken by flash loaning the debt asset, swapping the collateral asset
    /// to the debt asset using Velora, using the resulting debt to repay the flash loan, and transferring the remaining
    /// collateral asset to the sender
    /// @param params Params for the redeem from a LeverageToken using Velora
    /// @param debtLoanAmount Amount of debt asset flash loaned
    function _redeemWithVeloraAndRepayMorphoFlashLoan(RedeemWithVeloraParams memory params, uint256 debtLoanAmount)
        internal
    {
        IERC20 collateralAsset = leverageManager.getLeverageTokenCollateralAsset(params.leverageToken);
        IERC20 debtAsset = leverageManager.getLeverageTokenDebtAsset(params.leverageToken);

        // Transfer the shares from the sender
        // slither-disable-next-line arbitrary-send-erc20
        SafeERC20.safeTransferFrom(params.leverageToken, params.sender, address(this), params.shares);

        // Use the debt from the flash loan to redeem the shares from the sender
        SafeERC20.forceApprove(debtAsset, address(leverageManager), debtLoanAmount);
        uint256 collateralWithdrawn =
            leverageManager.redeem(params.leverageToken, params.shares, params.minCollateralForSender).collateral;

        // Use the VeloraAdapter to swap the collateral asset received from the redeem to the debt asset, used to repay the flash loan.
        // The excess collateral asset sent back to this LeverageRouter is for the sender of the redeem
        // slither-disable-next-line arbitrary-send-erc20
        SafeERC20.safeTransfer(collateralAsset, address(params.veloraAdapter), collateralWithdrawn);
        uint256 collateralForSender = params.veloraAdapter.buy(
            params.augustus,
            params.swapData,
            address(collateralAsset),
            address(debtAsset),
            debtLoanAmount,
            params.offsets,
            address(this)
        );

        // Check slippage
        if (collateralForSender < params.minCollateralForSender) {
            revert CollateralSlippageTooHigh(collateralForSender, params.minCollateralForSender);
        }

        // Transfer remaining collateral to the sender
        if (collateralForSender > 0) {
            SafeERC20.safeTransfer(collateralAsset, params.sender, collateralForSender);
        }

        // Approve Morpho to spend the debt asset to repay the flash loan
        SafeERC20.forceApprove(debtAsset, address(morpho), debtLoanAmount);
    }
}
"
    },
    "lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "lib/morpho-blue/src/interfaces/IMorpho.sol": {
      "content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

type Id is bytes32;

struct MarketParams {
    address loanToken;
    address collateralToken;
    address oracle;
    address irm;
    uint256 lltv;
}

/// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
/// accrual.
struct Position {
    uint256 supplyShares;
    uint128 borrowShares;
    uint128 collateral;
}

/// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalSupplyShares` does not contain the additional shares accrued by `feeRecipient` since the last
/// interest accrual.
struct Market {
    uint128 totalSupplyAssets;
    uint128 totalSupplyShares;
    uint128 totalBorrowAssets;
    uint128 totalBorrowShares;
    uint128 lastUpdate;
    uint128 fee;
}

struct Authorization {
    address authorizer;
    address authorized;
    bool isAuthorized;
    uint256 nonce;
    uint256 deadline;
}

struct Signature {
    uint8 v;
    bytes32 r;
    bytes32 s;
}

/// @dev This interface is used for factorizing IMorphoStaticTyping and IMorpho.
/// @dev Consider using the IMorpho interface instead of this one.
interface IMorphoBase {
    /// @notice The EIP-712 domain separator.
    /// @dev Warning: Every EIP-712 signed message based on this domain separator can be reused on another chain sharing
    /// the same chain id because the domain separator would be the same.
    function DOMAIN_SEPARATOR() external view returns (bytes32);

    /// @notice The owner of the contract.
    /// @dev It has the power to change the owner.
    /// @dev It has the power to set fees on markets and set the fee recipient.
    /// @dev It has the power to enable but not disable IRMs and LLTVs.
    function owner() external view returns (address);

    /// @notice The fee recipient of all markets.
    /// @dev The recipient receives the fees of a given market through a supply position on that market.
    function feeRecipient() external view returns (address);

    /// @notice Whether the `irm` is enabled.
    function isIrmEnabled(address irm) external view returns (bool);

    /// @notice Whether the `lltv` is enabled.
    function isLltvEnabled(uint256 lltv) external view returns (bool);

    /// @notice Whether `authorized` is authorized to modify `authorizer`'s position on all markets.
    /// @dev Anyone is authorized to modify their own positions, regardless of this variable.
    function isAuthorized(address authorizer, address authorized) external view returns (bool);

    /// @notice The `authorizer`'s current nonce. Used to prevent replay attacks with EIP-712 signatures.
    function nonce(address authorizer) external view returns (uint256);

    /// @notice Sets `newOwner` as `owner` of the contract.
    /// @dev Warning: No two-step transfer ownership.
    /// @dev Warning: The owner can be set to the zero address.
    function setOwner(address newOwner) external;

    /// @notice Enables `irm` as a possible IRM for market creation.
    /// @dev Warning: It is not possible to disable an IRM.
    function enableIrm(address irm) external;

    /// @notice Enables `lltv` as a possible LLTV for market creation.
    /// @dev Warning: It is not possible to disable a LLTV.
    function enableLltv(uint256 lltv) external;

    /// @notice Sets the `newFee` for the given market `marketParams`.
    /// @param newFee The new fee, scaled by WAD.
    /// @dev Warning: The recipient can be the zero address.
    function setFee(MarketParams memory marketParams, uint256 newFee) external;

    /// @notice Sets `newFeeRecipient` as `feeRecipient` of the fee.
    /// @dev Warning: If the fee recipient is set to the zero address, fees will accrue there and will be lost.
    /// @dev Modifying the fee recipient will allow the new recipient to claim any pending fees not yet accrued. To
    /// ensure that the current recipient receives all due fees, accrue interest manually prior to making any changes.
    function setFeeRecipient(address newFeeRecipient) external;

    /// @notice Creates the market `marketParams`.
    /// @dev Here is the list of assumptions on the market's dependencies (tokens, IRM and oracle) that guarantees
    /// Morpho behaves as expected:
    /// - The token should be ERC-20 compliant, except that it can omit return values on `transfer` and `transferFrom`.
    /// - The token balance of Morpho should only decrease on `transfer` and `transferFrom`. In particular, tokens with
    /// burn functions are not supported.
    /// - The token should not re-enter Morpho on `transfer` nor `transferFrom`.
    /// - The token balance of the sender (resp. receiver) should decrease (resp. increase) by exactly the given amount
    /// on `transfer` and `transferFrom`. In particular, tokens with fees on transfer are not supported.
    /// - The IRM should not re-enter Morpho.
    /// - The oracle should return a price with the correct scaling.
    /// @dev Here is a list of properties on the market's dependencies that could break Morpho's liveness properties
    /// (funds could get stuck):
    /// - The token can revert on `transfer` and `transferFrom` for a reason other than an approval or balance issue.
    /// - A very high amount of assets (~1e35) supplied or borrowed can make the computation of `toSharesUp` and
    /// `toSharesDown` overflow.
    /// - The IRM can revert on `borrowRate`.
    /// - A very high borrow rate returned by the IRM can make the computation of `interest` in `_accrueInterest`
    /// overflow.
    /// - The oracle can revert on `price`. Note that this can be used to prevent `borrow`, `withdrawCollateral` and
    /// `liquidate` from being used under certain market conditions.
    /// - A very high price returned by the oracle can make the computation of `maxBorrow` in `_isHealthy` overflow, or
    /// the computation of `assetsRepaid` in `liquidate` overflow.
    /// @dev The borrow share price of a market with less than 1e4 assets borrowed can be decreased by manipulations, to
    /// the point where `totalBorrowShares` is very large and borrowing overflows.
    function createMarket(MarketParams memory marketParams) external;

    /// @notice Supplies `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
    /// `onMorphoSupply` function with the given `data`.
    /// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
    /// caller is guaranteed to have `assets` tokens pulled from their balance, but the possibility to mint a specific
    /// amount of shares is given for full compatibility and precision.
    /// @dev Supplying a large amount can revert for overflow.
    /// @dev Supplying an amount of shares may lead to supply more or fewer assets than expected due to slippage.
    /// Consider using the `assets` parameter to avoid this.
    /// @param marketParams The market to supply assets to.
    /// @param assets The amount of assets to supply.
    /// @param shares The amount of shares to mint.
    /// @param onBehalf The address that will own the increased supply position.
    /// @param data Arbitrary data to pass to the `onMorphoSupply` callback. Pass empty data if not needed.
    /// @return assetsSupplied The amount of assets supplied.
    /// @return sharesSupplied The amount of shares minted.
    function supply(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        bytes memory data
    ) external returns (uint256 assetsSupplied, uint256 sharesSupplied);

    /// @notice Withdraws `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
    /// @dev Either `assets` or `shares` should be zero. To withdraw max, pass the `shares`'s balance of `onBehalf`.
    /// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
    /// @dev Withdrawing an amount corresponding to more shares than supplied will revert for underflow.
    /// @dev It is advised to use the `shares` input when withdrawing the full position to avoid reverts due to
    /// conversion roundings between shares and assets.
    /// @param marketParams The market to withdraw assets from.
    /// @param assets The amount of assets to withdraw.
    /// @param shares The amount of shares to burn.
    /// @param onBehalf The address of the owner of the supply position.
    /// @param receiver The address that will receive the withdrawn assets.
    /// @return assetsWithdrawn The amount of assets withdrawn.
    /// @return sharesWithdrawn The amount of shares burned.
    function withdraw(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        address receiver
    ) external returns (uint256 assetsWithdrawn, uint256 sharesWithdrawn);

    /// @notice Borrows `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
    /// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
    /// caller is guaranteed to borrow `assets` of tokens, but the possibility to mint a specific amount of shares is
    /// given for full compatibility and precision.
    /// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
    /// @dev Borrowing a large amount can revert for overflow.
    /// @dev Borrowing an amount of shares may lead to borrow fewer assets than expected due to slippage.
    /// Consider using the `assets` parameter to avoid this.
    /// @param marketParams The market to borrow assets from.
    /// @param assets The amount of assets to borrow.
    /// @param shares The amount of shares to mint.
    /// @param onBehalf The address that will own the increased borrow position.
    /// @param receiver The address that will receive the borrowed assets.
    /// @return assetsBorrowed The amount of assets borrowed.
    /// @return sharesBorrowed The amount of shares minted.
    function borrow(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        address receiver
    ) external returns (uint256 assetsBorrowed, uint256 sharesBorrowed);

    /// @notice Repays `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
    /// `onMorphoReplay` function with the given `data`.
    /// @dev Either `assets` or `shares` should be zero. To repay max, pass the `shares`'s balance of `onBehalf`.
    /// @dev Repaying an amount corresponding to more shares than borrowed will revert for underflow.
    /// @dev It is advised to use the `shares` input when repaying the full position to avoid reverts due to conversion
    /// roundings between shares and assets.
    /// @dev An attacker can front-run a repay with a small repay making the transaction revert for underflow.
    /// @param marketParams The market to repay assets to.
    /// @param assets The amount of assets to repay.
    /// @param shares The amount of shares to burn.
    /// @param onBehalf The address of the owner of the debt position.
    /// @param data Arbitrary data to pass to the `onMorphoRepay` callback. Pass empty data if not needed.
    /// @return assetsRepaid The amount of assets repaid.
    /// @return sharesRepaid The amount of shares burned.
    function repay(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        bytes memory data
    ) external returns (uint256 assetsRepaid, uint256 sharesRepaid);

    /// @notice Supplies `assets` of collateral on behalf of `onBehalf`, optionally calling back the caller's
    /// `onMorphoSupplyCollateral` function with the given `data`.
    /// @dev Interest are not accrued since it's not required and it saves gas.
    /// @dev Supplying a large amount can revert for overflow.
    /// @param marketParams The market to supply collateral to.
    /// @param assets The amount of collateral to supply.
    /// @param onBehalf The address that will own the increased collateral position.
    /// @param data Arbitrary data to pass to the `onMorphoSupplyCollateral` callback. Pass empty data if not needed.
    function supplyCollateral(MarketParams memory marketParams, uint256 assets, address onBehalf, bytes memory data)
        external;

    /// @notice Withdraws `assets` of collateral on behalf of `onBehalf` and sends the assets to `receiver`.
    /// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
    /// @dev Withdrawing an amount corresponding to more collateral than supplied will revert for underflow.
    /// @param marketParams The market to withdraw collateral from.
    /// @param assets The amount of collateral to withdraw.
    /// @param onBehalf The address of the owner of the collateral position.
    /// @param receiver The address that will receive the collateral assets.
    function withdrawCollateral(MarketParams memory marketParams, uint256 assets, address onBehalf, address receiver)
        external;

    /// @notice Liquidates the given `repaidShares` of debt asset or seize the given `seizedAssets` of collateral on the
    /// given market `marketParams` of the given `borrower`'s position, optionally calling back the caller's
    /// `onMorphoLiquidate` function with the given `data`.
    /// @dev Either `seizedAssets` or `repaidShares` should be zero.
    /// @dev Seizing more than the collateral balance will underflow and revert without any error message.
    /// @dev Repaying more than the borrow balance will underflow and revert without any error message.
    /// @dev An attacker can front-run a liquidation with a small repay making the transaction revert for underflow.
    /// @param marketParams The market of the position.
    /// @param borrower The owner of the position.
    /// @param seizedAssets The amount of collateral to seize.
    /// @param repaidShares The amount of shares to repay.
    /// @param data Arbitrary data to pass to the `onMorphoLiquidate` callback. Pass empty data if not needed.
    /// @return The amount of assets seized.
    /// @return The amount of assets repaid.
    function liquidate(
        MarketParams memory marketParams,
        address borrower,
        uint256 seizedAssets,
        uint256 repaidShares,
        bytes memory data
    ) external returns (uint256, uint256);

    /// @notice Executes a flash loan.
    /// @dev Flash loans have access to the whole balance of the contract (the liquidity and deposited collateral of all
    /// markets combined, plus donations).
    /// @dev Warning: Not ERC-3156 compliant but compatibility is easily reached:
    /// - `flashFee` is zero.
    /// - `maxFlashLoan` is the token's balance of this contract.
    /// - The receiver of `assets` is the caller.
    /// @param token The token to flash loan.
    /// @param assets The amount of assets to flash loan.
    /// @param data Arbitrary data to pass to the `onMorphoFlashLoan` callback.
    function flashLoan(address token, uint256 assets, bytes calldata data) external;

    /// @notice Sets the authorization for `authorized` to manage `msg.sender`'s positions.
    /// @param authorized The authorized address.
    /// @param newIsAuthorized The new authorization status.
    function setAuthorization(address authorized, bool newIsAuthorized) external;

    /// @notice Sets the authorization for `authorization.authorized` to manage `authorization.authorizer`'s positions.
    /// @dev Warning: Reverts if the signature has already been submitted.
    /// @dev The signature is malleable, but it has no impact on the security here.
    /// @dev The nonce is passed as argument to be able to revert with a different error message.
    /// @param authorization The `Authorization` struct.
    /// @param signature The signature.
    function setAuthorizationWithSig(Authorization calldata authorization, Signature calldata signature) external;

    /// @notice Accrues interest for the given market `marketParams`.
    function accrueInterest(MarketParams memory marketParams) external;

    /// @notice Returns the data stored on the different `slots`.
    function extSloads(bytes32[] memory slots) external view returns (bytes32[] memory);
}

/// @dev This interface is inherited by Morpho so that function signatures are checked by the compiler.
/// @dev Consider using the IMorpho interface instead of this one.
interface IMorphoStaticTyping is IMorphoBase {
    /// @notice The state of the position of `user` on the market corresponding to `id`.
    /// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
    /// accrual.
    function position(Id id, address user)
        external
        view
        returns (uint256 supplyShares, uint128 borrowShares, uint128 collateral);

    /// @notice The state of the market corresponding to `id`.
    /// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
    /// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
    /// @dev Warning: `totalSupplyShares` does not contain the accrued shares by `feeRecipient` since the last interest
    /// accrual.
    function market(Id id)
        external
        view
        returns (
            uint128 totalSupplyAssets,
            uint128 totalSupplyShares,
            uint128 totalBorrowAssets,
            uint128 totalBorrowShares,
            uint128 lastUpdate,
            uint128 fee
        );

    /// @notice The market params corresponding to `id`.
    /// @dev This mapping is not used in Morpho. It is there to enable reducing the cost associated to calldata on layer
    /// 2s by creating a wrapper contract with functions that take `id` as input instead of `marketParams`.
    function idToMarketParams(Id id)
        external
        view
        returns (address loanToken, address collateralToken, address oracle, address irm, uint256 lltv);
}

/// @title IMorpho
/// @author Morpho Labs
/// @custom:contact security@morpho.org
/// @dev Use this interface for Morpho to have access to all the functions with the appropriate function signatures.
interface IMorpho is IMorphoBase {
    /// @notice The state of the position of `user` on the market corresponding to `id`.
    /// @dev Warning: For `feeRecipient`, `p.supplyShares` does not contain the accrued shares since the last interest
    /// accrual.
    function position(Id id, address user) external view returns (Position memory p);

    /// @notice The state of the market corresponding to `id`.
    /// @dev Warning: `m.totalSupplyAssets` doe

Tags:
ERC20, ERC165, Multisig, Mintable, Burnable, Swap, Liquidity, Upgradeable, Multi-Signature, Factory, Oracle|addr:0xb0764de7eef0ac69855c431334b7bc51a96e6dba|verified:true|block:23471321|tx:0x111d5b579995a414b423e1d1f8641676b6f9940908960ad4a9c9a248f81c08a6|first_check:1759220114

Submitted on: 2025-09-30 10:15:14

Comments

Log in to comment.

No comments yet.