Description:
Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"smart-contracts-public/src/pricing/PriceRouter.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;
import "@openzeppelin/contracts/access/manager/AccessManaged.sol";
import "../pricing/IPriceOracle.sol";
/**
* @title PriceRouter
* @notice Registry from token → {IPriceOracle}. Used across deposit/redemption/reserve contexts.
* @dev Returns prices in WAD (1e18). Only VALID or CAPPED statuses are accepted; STALE reverts.
*
* **Security**
* - Oracle assignment is gated by {AccessManaged}. Misconfiguration will cause hard reverts,
* which is preferable to using unsafe prices.
*/
contract PriceRouter is AccessManaged {
// ============ Constants ============
// Role identifier for backward compatibility (informational only)
bytes32 public constant CONFIG_ROLE = keccak256("CONFIG_ROLE");
// ============ State ============
mapping(address => IPriceOracle) public priceFeeds;
string public description;
// ============ Events ============
event PriceFeedSet(address indexed token, address indexed feed);
event PriceFeedRemoved(address indexed token);
// ============ Errors ============
error TokenNotConfigured();
error InvalidPriceFeed();
error StalePrice();
error InvalidPrice();
// ============ Constructor ============
/**
* @notice Initialize the price router
* @param _accessManager Address of the AccessManager contract
* @param _description Human-readable description of this router instance
*/
constructor(address _accessManager, string memory _description) AccessManaged(_accessManager) {
description = _description;
}
// ============ Configuration Functions ============
/**
* @notice Set the price feed for a token
* @param token Token address
* @param feed Price oracle address
*/
function setPriceFeed(address token, address feed) external restricted {
if (feed == address(0)) revert InvalidPriceFeed();
priceFeeds[token] = IPriceOracle(feed);
emit PriceFeedSet(token, feed);
}
/**
* @notice Remove the price feed for a token
* @param token Token address
*/
function removePriceFeed(address token) external restricted {
delete priceFeeds[token];
emit PriceFeedRemoved(token);
}
// ============ View Functions ============
/**
* @notice Get the current price of a token
* @param token Token address
* @return Price in WAD format (18 decimals)
*/
function getPrice(address token) external view returns (uint256) {
IPriceOracle feed = priceFeeds[token];
if (address(feed) == address(0)) revert TokenNotConfigured();
IPriceOracle.PriceInfo memory info = feed.latestPriceInfo();
// Check for stale price first
if (info.status == IPriceOracle.PriceStatus.STALE) {
revert StalePrice();
}
// Accept VALID and CAPPED prices
if (
info.status != IPriceOracle.PriceStatus.VALID
&& info.status != IPriceOracle.PriceStatus.CAPPED
) {
revert InvalidPrice();
}
return info.price;
}
/**
* @notice Check if a price feed is configured for a token
* @param token Token address
* @return True if a price feed is configured
*/
function hasPrice(address token) external view returns (bool) {
return address(priceFeeds[token]) != address(0);
}
}
"
},
"smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/AccessManaged.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/manager/AccessManaged.sol)
pragma solidity ^0.8.20;
import {AuthorityUtils} from "./AuthorityUtils.sol";
import {IAccessManager} from "./IAccessManager.sol";
import {IAccessManaged} from "./IAccessManaged.sol";
import {Context} from "../../utils/Context.sol";
/**
* @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
* permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
* implementing a policy that allows certain callers to access certain functions.
*
* IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
* functions, and ideally only used in `external` functions. See {restricted}.
*/
abstract contract AccessManaged is Context, IAccessManaged {
address private _authority;
bool private _consumingSchedule;
/**
* @dev Initializes the contract connected to an initial authority.
*/
constructor(address initialAuthority) {
_setAuthority(initialAuthority);
}
/**
* @dev Restricts access to a function as defined by the connected Authority for this contract and the
* caller and selector of the function that entered the contract.
*
* [IMPORTANT]
* ====
* In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
* functions that are used as external entry points and are not called internally. Unless you know what you're
* doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
* implications! This is because the permissions are determined by the function that entered the contract, i.e. the
* function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
* ====
*
* [WARNING]
* ====
* Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
* function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
* functions are the only execution paths where a function selector cannot be unambiguously determined from the calldata
* since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
* if no calldata is provided. (See {_checkCanCall}).
*
* The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
* ====
*/
modifier restricted() {
_checkCanCall(_msgSender(), _msgData());
_;
}
/// @inheritdoc IAccessManaged
function authority() public view virtual returns (address) {
return _authority;
}
/// @inheritdoc IAccessManaged
function setAuthority(address newAuthority) public virtual {
address caller = _msgSender();
if (caller != authority()) {
revert AccessManagedUnauthorized(caller);
}
if (newAuthority.code.length == 0) {
revert AccessManagedInvalidAuthority(newAuthority);
}
_setAuthority(newAuthority);
}
/// @inheritdoc IAccessManaged
function isConsumingScheduledOp() public view returns (bytes4) {
return _consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
}
/**
* @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
* permissions set by the current authority.
*/
function _setAuthority(address newAuthority) internal virtual {
_authority = newAuthority;
emit AuthorityUpdated(newAuthority);
}
/**
* @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
* is less than 4 bytes long.
*/
function _checkCanCall(address caller, bytes calldata data) internal virtual {
(bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
authority(),
caller,
address(this),
bytes4(data[0:4])
);
if (!immediate) {
if (delay > 0) {
_consumingSchedule = true;
IAccessManager(authority()).consumeScheduledOp(caller, data);
_consumingSchedule = false;
} else {
revert AccessManagedUnauthorized(caller);
}
}
}
}
"
},
"smart-contracts-public/src/pricing/IPriceOracle.sol": {
"content": "pragma solidity 0.8.30;
/**
* @title IPriceOracle
* @notice Standardized price oracle interface returning WAD‑scaled prices with a status code.
* @dev Prices MUST be scaled to 1e18 (WAD). Implementations can surface status information such as
* validity, staleness, capping, or circuit breaker activation.
*/
interface IPriceOracle {
enum PriceStatus {
VALID,
CAPPED,
INVALID,
STALE,
VOLATILE,
CIRCUIT_BREAKER
}
struct PriceInfo {
uint256 price;
PriceStatus status;
}
/**
* @notice Retrieves the latest price information for the configured token
* @return PriceInfo Struct containing the price and its status
*/
function latestPriceInfo() external view returns (PriceInfo memory);
/**
* @notice Retrieves the number of decimals for the token's price feed
* @return uint8 Number of decimals
*/
function decimals() external view returns (uint8);
}
"
},
"smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/AuthorityUtils.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/manager/AuthorityUtils.sol)
pragma solidity ^0.8.20;
import {IAuthority} from "./IAuthority.sol";
library AuthorityUtils {
/**
* @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility
* for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data.
* This helper function takes care of invoking `canCall` in a backwards compatible way without reverting.
*/
function canCallWithDelay(
address authority,
address caller,
address target,
bytes4 selector
) internal view returns (bool immediate, uint32 delay) {
bytes memory data = abi.encodeCall(IAuthority.canCall, (caller, target, selector));
assembly ("memory-safe") {
mstore(0x00, 0x00)
mstore(0x20, 0x00)
if staticcall(gas(), authority, add(data, 0x20), mload(data), 0x00, 0x40) {
immediate := mload(0x00)
delay := mload(0x20)
// If delay does not fit in a uint32, return 0 (no delay)
// equivalent to: if gt(delay, 0xFFFFFFFF) { delay := 0 }
delay := mul(delay, iszero(shr(32, delay)))
}
}
}
}
"
},
"smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/IAccessManager.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/manager/IAccessManager.sol)
pragma solidity >=0.8.4;
interface IAccessManager {
/**
* @dev A delayed operation was scheduled.
*/
event OperationScheduled(
bytes32 indexed operationId,
uint32 indexed nonce,
uint48 schedule,
address caller,
address target,
bytes data
);
/**
* @dev A scheduled operation was executed.
*/
event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev A scheduled operation was canceled.
*/
event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev Informational labelling for a roleId.
*/
event RoleLabel(uint64 indexed roleId, string label);
/**
* @dev Emitted when `account` is granted `roleId`.
*
* NOTE: The meaning of the `since` argument depends on the `newMember` argument.
* If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role,
* otherwise it indicates the execution delay for this account and roleId is updated.
*/
event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);
/**
* @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
*/
event RoleRevoked(uint64 indexed roleId, address indexed account);
/**
* @dev Role acting as admin over a given `roleId` is updated.
*/
event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);
/**
* @dev Role acting as guardian over a given `roleId` is updated.
*/
event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);
/**
* @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
*/
event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);
/**
* @dev Target mode is updated (true = closed, false = open).
*/
event TargetClosed(address indexed target, bool closed);
/**
* @dev Role required to invoke `selector` on `target` is updated to `roleId`.
*/
event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);
/**
* @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
*/
event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);
error AccessManagerAlreadyScheduled(bytes32 operationId);
error AccessManagerNotScheduled(bytes32 operationId);
error AccessManagerNotReady(bytes32 operationId);
error AccessManagerExpired(bytes32 operationId);
error AccessManagerLockedRole(uint64 roleId);
error AccessManagerBadConfirmation();
error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId);
error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector);
error AccessManagerUnauthorizedConsume(address target);
error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
error AccessManagerInvalidInitialAdmin(address initialAdmin);
/**
* @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
* no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
* & {execute} workflow.
*
* This function is usually called by the targeted contract to control immediate execution of restricted functions.
* Therefore we only return true if the call can be performed without any delay. If the call is subject to a
* previously set delay (not zero), then the function should return false and the caller should schedule the operation
* for future execution.
*
* If `allowed` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
* the operation can be executed if and only if delay is greater than 0.
*
* NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
* is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
* to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
*
* NOTE: This function does not report the permissions of the admin functions in the manager itself. These are defined by the
* {AccessManager} documentation.
*/
function canCall(
address caller,
address target,
bytes4 selector
) external view returns (bool allowed, uint32 delay);
/**
* @dev Expiration delay for scheduled proposals. Defaults to 1 week.
*
* IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
* disabling any scheduling usage.
*/
function expiration() external view returns (uint32);
/**
* @dev Minimum setback for all delay updates, with the exception of execution delays. It
* can be increased without setback (and reset via {revokeRole} in the case event of an
* accidental increase). Defaults to 5 days.
*/
function minSetback() external view returns (uint32);
/**
* @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
*
* NOTE: When the manager itself is closed, admin functions are still accessible to avoid locking the contract.
*/
function isTargetClosed(address target) external view returns (bool);
/**
* @dev Get the role required to call a function.
*/
function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);
/**
* @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
*/
function getTargetAdminDelay(address target) external view returns (uint32);
/**
* @dev Get the id of the role that acts as an admin for the given role.
*
* The admin permission is required to grant the role, revoke the role and update the execution delay to execute
* an operation that is restricted to this role.
*/
function getRoleAdmin(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role that acts as a guardian for a given role.
*
* The guardian permission allows canceling operations that have been scheduled under the role.
*/
function getRoleGuardian(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role current grant delay.
*
* Its value may change at any point without an event emitted following a call to {setGrantDelay}.
* Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
*/
function getRoleGrantDelay(uint64 roleId) external view returns (uint32);
/**
* @dev Get the access details for a given account for a given role. These details include the timepoint at which
* membership becomes active, and the delay applied to all operation by this user that requires this permission
* level.
*
* Returns:
* [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
* [1] Current execution delay for the account.
* [2] Pending execution delay for the account.
* [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
*/
function getAccess(
uint64 roleId,
address account
) external view returns (uint48 since, uint32 currentDelay, uint32 pendingDelay, uint48 effect);
/**
* @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
* permission might be associated with an execution delay. {getAccess} can provide more details.
*/
function hasRole(uint64 roleId, address account) external view returns (bool isMember, uint32 executionDelay);
/**
* @dev Give a label to a role, for improved role discoverability by UIs.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleLabel} event.
*/
function labelRole(uint64 roleId, string calldata label) external;
/**
* @dev Add `account` to `roleId`, or change its execution delay.
*
* This gives the account the authorization to call any function that is restricted to this role. An optional
* execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
* that is restricted to members of this role. The user will only be able to execute the operation after the delay has
* passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
*
* If the account has already been granted this role, the execution delay will be updated. This update is not
* immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
* called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
* operation executed in the 3 hours that follows this update was indeed scheduled before this update.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - granted role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleGranted} event.
*/
function grantRole(uint64 roleId, address account, uint32 executionDelay) external;
/**
* @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
* no effect.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - revoked role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function revokeRole(uint64 roleId, address account) external;
/**
* @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
* the role this call has no effect.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function renounceRole(uint64 roleId, address callerConfirmation) external;
/**
* @dev Change admin role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleAdminChanged} event
*/
function setRoleAdmin(uint64 roleId, uint64 admin) external;
/**
* @dev Change guardian role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGuardianChanged} event
*/
function setRoleGuardian(uint64 roleId, uint64 guardian) external;
/**
* @dev Update the delay for granting a `roleId`.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGrantDelayChanged} event.
*/
function setGrantDelay(uint64 roleId, uint32 newDelay) external;
/**
* @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetFunctionRoleUpdated} event per selector.
*/
function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;
/**
* @dev Set the delay for changing the configuration of a given target contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetAdminDelayUpdated} event.
*/
function setTargetAdminDelay(address target, uint32 newDelay) external;
/**
* @dev Set the closed flag for a contract.
*
* Closing the manager itself won't disable access to admin methods to avoid locking the contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetClosed} event.
*/
function setTargetClosed(address target, bool closed) external;
/**
* @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
* operation is not yet scheduled, has expired, was executed, or was canceled.
*/
function getSchedule(bytes32 id) external view returns (uint48);
/**
* @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
* been scheduled.
*/
function getNonce(bytes32 id) external view returns (uint32);
/**
* @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
* choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
* required for the caller. The special value zero will automatically set the earliest possible time.
*
* Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
* the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
* scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
*
* Emits a {OperationScheduled} event.
*
* NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
* this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
* contract if it is using standard Solidity ABI encoding.
*/
function schedule(
address target,
bytes calldata data,
uint48 when
) external returns (bytes32 operationId, uint32 nonce);
/**
* @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
* execution delay is 0.
*
* Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
* operation wasn't previously scheduled (if the caller doesn't have an execution delay).
*
* Emits an {OperationExecuted} event only if the call was scheduled and delayed.
*/
function execute(address target, bytes calldata data) external payable returns (uint32);
/**
* @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
* operation that is cancelled.
*
* Requirements:
*
* - the caller must be the proposer, a guardian of the targeted function, or a global admin
*
* Emits a {OperationCanceled} event.
*/
function cancel(address caller, address target, bytes calldata data) external returns (uint32);
/**
* @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
* (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
*
* This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
* with all the verifications that it implies.
*
* Emit a {OperationExecuted} event.
*/
function consumeScheduledOp(address caller, bytes calldata data) external;
/**
* @dev Hashing function for delayed operations.
*/
function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);
/**
* @dev Changes the authority of a target managed by this manager instance.
*
* Requirements:
*
* - the caller must be a global admin
*/
function updateAuthority(address target, address newAuthority) external;
}
"
},
"smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/IAccessManaged.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/manager/IAccessManaged.sol)
pragma solidity >=0.8.4;
interface IAccessManaged {
/**
* @dev Authority that manages this contract was updated.
*/
event AuthorityUpdated(address authority);
error AccessManagedUnauthorized(address caller);
error AccessManagedRequiredDelay(address caller, uint32 delay);
error AccessManagedInvalidAuthority(address authority);
/**
* @dev Returns the current authority.
*/
function authority() external view returns (address);
/**
* @dev Transfers control to a new authority. The caller must be the current authority.
*/
function setAuthority(address) external;
/**
* @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
* being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
* attacker controlled calls.
*/
function isConsumingScheduledOp() external view returns (bytes4);
}
"
},
"smart-contracts-public/lib/openzeppelin-contracts/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
"
},
"smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/IAuthority.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/manager/IAuthority.sol)
pragma solidity >=0.4.16;
/**
* @dev Standard interface for permissioning originally defined in Dappsys.
*/
interface IAuthority {
/**
* @dev Returns true if the caller can invoke on a target the function identified by a function selector.
*/
function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed);
}
"
}
},
"settings": {
"remappings": [
"@chainlink/=smart-contracts-public/lib/chainlink/",
"@openzeppelin/contracts/=smart-contracts-public/lib/openzeppelin-contracts/contracts/",
"@openzeppelin/contracts-upgradeable/=smart-contracts-public/lib/openzeppelin-contracts-upgradeable/contracts/",
"forge-std/=smart-contracts-public/lib/forge-std/src/",
"openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/",
"chainlink/=smart-contracts-public/lib/chainlink/",
"erc4626-tests/=smart-contracts-public/lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"halmos-cheatcodes/=smart-contracts-public/lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts-upgradeable/=smart-contracts-public/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=smart-contracts-public/lib/openzeppelin-contracts/"
],
"optimizer": {
"enabled": true,
"runs": 500
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": true
}
}}
Submitted on: 2025-09-30 20:30:25
Comments
Log in to comment.
No comments yet.