RedemptionVault

Description:

Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "smart-contracts-public/src/redemption/RedemptionVault.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;

import "@openzeppelin/contracts/access/manager/AccessManaged.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

/**
 * @title RedemptionVault
 * @notice Custodies payout tokens and supports reserved balances for windowed redemptions.
 * @dev The vault keeps lightweight internal accounting (`balances`, `reservedPerAsset`) but always
 * relies on on-chain token balances to avoid token trapping or ledger drift. Only authorized
 * modules can withdraw or reserve.
 *
 * **Security**
 * - Non-reentrant.
 * - `restricted` access via {AccessManaged} for all state-changing operations.
 */
contract RedemptionVault is AccessManaged, ReentrancyGuard {
    using SafeERC20 for IERC20;
    // Custom errors

    error InvalidAsset();
    error InvalidRecipient();
    error InvalidAddress();
    error ZeroAmount();
    error InsufficientBalance();

    // Functions in this contract are restricted based on AccessManager configuration
    // Expected roles:
    // - Admin functions: deposit
    // - Redeemer functions: withdraw, withdrawReserved, reserveForWindow, releaseFromWindow
    // - Guardian functions: emergencyWithdraw

    mapping(address => uint256) public balances;
    mapping(address => uint256) public reservedPerAsset; // Window redemption reservations per asset

    event Deposited(address indexed asset, address indexed from, uint256 amount);
    event Withdrawn(address indexed asset, address indexed to, uint256 amount);
    event WindowFundsReserved(address indexed asset, uint256 amount);
    event WindowFundsReleased(address indexed asset, uint256 amount);

    /// @param accessManager Address of the AccessManager contract
    constructor(address accessManager) AccessManaged(accessManager) {
        if (accessManager == address(0)) revert InvalidAddress();
    }

    /// @notice Deposit assets into the vault
    /// @dev Restricted to admin role to prevent manipulation of vault balances
    /// @param asset Address of the asset to deposit
    /// @param amount Amount to deposit
    function deposit(address asset, uint256 amount) external restricted {
        if (asset == address(0)) revert InvalidAsset();
        if (amount == 0) revert ZeroAmount();

        IERC20(asset).safeTransferFrom(msg.sender, address(this), amount);
        balances[asset] += amount;

        emit Deposited(asset, msg.sender, amount);
    }

    /// @notice Withdraw unreserved assets from the vault
    /// @param asset Address of the asset to withdraw
    /// @param to Recipient address
    /// @param amount Amount to withdraw
    function withdraw(address asset, address to, uint256 amount) external restricted nonReentrant {
        if (asset == address(0)) revert InvalidAsset();
        if (to == address(0)) revert InvalidRecipient();
        if (amount == 0) revert ZeroAmount();

        // Check available balance (on-chain balance minus reservations)
        uint256 available = _availableBalance(asset);
        if (available < amount) revert InsufficientBalance();

        // Update ledger if possible (for accounting, but don't let it block withdrawals)
        if (balances[asset] >= amount) {
            balances[asset] -= amount;
        } else {
            // If ledger is insufficient, set to 0 (tokens came from outside deposit)
            balances[asset] = 0;
        }

        IERC20(asset).safeTransfer(to, amount);

        emit Withdrawn(asset, to, amount);
    }

    /// @notice Withdraw from reserved funds (for window redemption claims)
    /// @param asset Address of the asset to withdraw
    /// @param to Recipient address
    /// @param amount Amount to withdraw from reserved funds
    function withdrawReserved(address asset, address to, uint256 amount)
        external
        restricted
        nonReentrant
    {
        if (asset == address(0)) revert InvalidAsset();
        if (to == address(0)) revert InvalidRecipient();
        if (amount == 0) revert ZeroAmount();

        // Check that we have enough reserved funds
        if (reservedPerAsset[asset] < amount) revert InsufficientBalance();

        // Check we have actual tokens (prevent over-reservation bugs)
        uint256 onChainBalance = IERC20(asset).balanceOf(address(this));
        if (onChainBalance < amount) revert InsufficientBalance();

        // Deduct from reserved tracking
        reservedPerAsset[asset] -= amount;

        // Update ledger if possible (don't let it underflow)
        if (balances[asset] >= amount) {
            balances[asset] -= amount;
        } else {
            balances[asset] = 0;
        }

        // Transfer the tokens
        IERC20(asset).safeTransfer(to, amount);

        emit Withdrawn(asset, to, amount);
    }

    /// @notice Get available balance of an asset (excluding window reservations)
    /// @param asset Address of the asset
    /// @return Available balance not reserved for redemption windows
    function availableBalance(address asset) external view returns (uint256) {
        return _availableBalance(asset);
    }

    /// @dev Internal helper to calculate available balance
    /// @dev Uses actual on-chain balance to prevent token trapping
    function _availableBalance(address asset) internal view returns (uint256) {
        // Use actual on-chain balance minus reservations
        // This prevents trapped tokens from direct transfers/airdrops
        uint256 onChainBalance = IERC20(asset).balanceOf(address(this));
        return
            onChainBalance > reservedPerAsset[asset] ? onChainBalance - reservedPerAsset[asset] : 0;
    }

    /// @notice Get total balance held by vault
    /// @param asset Address of the asset
    /// @return Total balance held by vault
    function totalBalance(address asset) external view returns (uint256) {
        return IERC20(asset).balanceOf(address(this));
    }

    /// @notice Reserve funds for a redemption window
    /// @param asset Address of the asset to reserve
    /// @param amount Amount to reserve for the window
    function reserveForWindow(address asset, uint256 amount) external restricted {
        if (asset == address(0)) revert InvalidAsset();
        // Check we have enough unreserved funds available
        uint256 available = _availableBalance(asset);
        if (available < amount) revert InsufficientBalance();

        // Increase the reservation
        reservedPerAsset[asset] += amount;
        emit WindowFundsReserved(asset, amount);
    }

    /// @notice Release window reservation (after claim period expires)
    /// @param asset Address of the asset to release
    /// @param amount Amount to release from window reservation
    function releaseFromWindow(address asset, uint256 amount) external restricted {
        if (asset == address(0)) revert InvalidAsset();
        if (reservedPerAsset[asset] < amount) revert InsufficientBalance();

        reservedPerAsset[asset] -= amount;
        emit WindowFundsReleased(asset, amount);
    }

    /// @notice Emergency withdrawal by guardian (break-glass)
    /// @dev Restricted function for emergency use - can withdraw even reserved funds
    /// @param asset Address of the asset
    /// @param to Recipient address
    /// @param amount Amount to withdraw
    function emergencyWithdraw(address asset, address to, uint256 amount)
        external
        restricted
        nonReentrant
    {
        if (asset == address(0)) revert InvalidAsset();
        if (to == address(0)) revert InvalidRecipient();
        if (amount == 0) revert ZeroAmount();

        // Use actual on-chain balance and cap the requested withdrawal to what is available
        uint256 onChainBalance = IERC20(asset).balanceOf(address(this));
        uint256 withdrawAmount = amount > onChainBalance ? onChainBalance : amount;
        if (withdrawAmount == 0) revert InsufficientBalance();

        // Update ledger if possible
        if (balances[asset] >= withdrawAmount) {
            balances[asset] -= withdrawAmount;
        } else {
            balances[asset] = 0;
        }

        // Adjust window reservations if necessary, ensuring reservations never exceed remaining on-chain balance
        uint256 remainingBalance = onChainBalance - withdrawAmount;
        if (reservedPerAsset[asset] > remainingBalance) {
            reservedPerAsset[asset] = remainingBalance;
        }

        IERC20(asset).safeTransfer(to, withdrawAmount);
        emit Withdrawn(asset, to, withdrawAmount);
    }
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/AccessManaged.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/manager/AccessManaged.sol)

pragma solidity ^0.8.20;

import {AuthorityUtils} from "./AuthorityUtils.sol";
import {IAccessManager} from "./IAccessManager.sol";
import {IAccessManaged} from "./IAccessManaged.sol";
import {Context} from "../../utils/Context.sol";

/**
 * @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
 * permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
 * implementing a policy that allows certain callers to access certain functions.
 *
 * IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
 * functions, and ideally only used in `external` functions. See {restricted}.
 */
abstract contract AccessManaged is Context, IAccessManaged {
    address private _authority;

    bool private _consumingSchedule;

    /**
     * @dev Initializes the contract connected to an initial authority.
     */
    constructor(address initialAuthority) {
        _setAuthority(initialAuthority);
    }

    /**
     * @dev Restricts access to a function as defined by the connected Authority for this contract and the
     * caller and selector of the function that entered the contract.
     *
     * [IMPORTANT]
     * ====
     * In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
     * functions that are used as external entry points and are not called internally. Unless you know what you're
     * doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
     * implications! This is because the permissions are determined by the function that entered the contract, i.e. the
     * function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
     * ====
     *
     * [WARNING]
     * ====
     * Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
     * function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
     * functions are the only execution paths where a function selector cannot be unambiguously determined from the calldata
     * since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
     * if no calldata is provided. (See {_checkCanCall}).
     *
     * The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
     * ====
     */
    modifier restricted() {
        _checkCanCall(_msgSender(), _msgData());
        _;
    }

    /// @inheritdoc IAccessManaged
    function authority() public view virtual returns (address) {
        return _authority;
    }

    /// @inheritdoc IAccessManaged
    function setAuthority(address newAuthority) public virtual {
        address caller = _msgSender();
        if (caller != authority()) {
            revert AccessManagedUnauthorized(caller);
        }
        if (newAuthority.code.length == 0) {
            revert AccessManagedInvalidAuthority(newAuthority);
        }
        _setAuthority(newAuthority);
    }

    /// @inheritdoc IAccessManaged
    function isConsumingScheduledOp() public view returns (bytes4) {
        return _consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
    }

    /**
     * @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
     * permissions set by the current authority.
     */
    function _setAuthority(address newAuthority) internal virtual {
        _authority = newAuthority;
        emit AuthorityUpdated(newAuthority);
    }

    /**
     * @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
     * is less than 4 bytes long.
     */
    function _checkCanCall(address caller, bytes calldata data) internal virtual {
        (bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
            authority(),
            caller,
            address(this),
            bytes4(data[0:4])
        );
        if (!immediate) {
            if (delay > 0) {
                _consumingSchedule = true;
                IAccessManager(authority()).consumeScheduledOp(caller, data);
                _consumingSchedule = false;
            } else {
                revert AccessManagedUnauthorized(caller);
            }
        }
    }
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/AuthorityUtils.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/manager/AuthorityUtils.sol)

pragma solidity ^0.8.20;

import {IAuthority} from "./IAuthority.sol";

library AuthorityUtils {
    /**
     * @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility
     * for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data.
     * This helper function takes care of invoking `canCall` in a backwards compatible way without reverting.
     */
    function canCallWithDelay(
        address authority,
        address caller,
        address target,
        bytes4 selector
    ) internal view returns (bool immediate, uint32 delay) {
        bytes memory data = abi.encodeCall(IAuthority.canCall, (caller, target, selector));

        assembly ("memory-safe") {
            mstore(0x00, 0x00)
            mstore(0x20, 0x00)

            if staticcall(gas(), authority, add(data, 0x20), mload(data), 0x00, 0x40) {
                immediate := mload(0x00)
                delay := mload(0x20)

                // If delay does not fit in a uint32, return 0 (no delay)
                // equivalent to: if gt(delay, 0xFFFFFFFF) { delay := 0 }
                delay := mul(delay, iszero(shr(32, delay)))
            }
        }
    }
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/IAccessManager.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/manager/IAccessManager.sol)

pragma solidity >=0.8.4;

interface IAccessManager {
    /**
     * @dev A delayed operation was scheduled.
     */
    event OperationScheduled(
        bytes32 indexed operationId,
        uint32 indexed nonce,
        uint48 schedule,
        address caller,
        address target,
        bytes data
    );

    /**
     * @dev A scheduled operation was executed.
     */
    event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce);

    /**
     * @dev A scheduled operation was canceled.
     */
    event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);

    /**
     * @dev Informational labelling for a roleId.
     */
    event RoleLabel(uint64 indexed roleId, string label);

    /**
     * @dev Emitted when `account` is granted `roleId`.
     *
     * NOTE: The meaning of the `since` argument depends on the `newMember` argument.
     * If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role,
     * otherwise it indicates the execution delay for this account and roleId is updated.
     */
    event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);

    /**
     * @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
     */
    event RoleRevoked(uint64 indexed roleId, address indexed account);

    /**
     * @dev Role acting as admin over a given `roleId` is updated.
     */
    event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);

    /**
     * @dev Role acting as guardian over a given `roleId` is updated.
     */
    event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);

    /**
     * @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
     */
    event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);

    /**
     * @dev Target mode is updated (true = closed, false = open).
     */
    event TargetClosed(address indexed target, bool closed);

    /**
     * @dev Role required to invoke `selector` on `target` is updated to `roleId`.
     */
    event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);

    /**
     * @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
     */
    event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);

    error AccessManagerAlreadyScheduled(bytes32 operationId);
    error AccessManagerNotScheduled(bytes32 operationId);
    error AccessManagerNotReady(bytes32 operationId);
    error AccessManagerExpired(bytes32 operationId);
    error AccessManagerLockedRole(uint64 roleId);
    error AccessManagerBadConfirmation();
    error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId);
    error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector);
    error AccessManagerUnauthorizedConsume(address target);
    error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
    error AccessManagerInvalidInitialAdmin(address initialAdmin);

    /**
     * @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
     * no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
     * & {execute} workflow.
     *
     * This function is usually called by the targeted contract to control immediate execution of restricted functions.
     * Therefore we only return true if the call can be performed without any delay. If the call is subject to a
     * previously set delay (not zero), then the function should return false and the caller should schedule the operation
     * for future execution.
     *
     * If `allowed` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
     * the operation can be executed if and only if delay is greater than 0.
     *
     * NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
     * is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
     * to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
     *
     * NOTE: This function does not report the permissions of the admin functions in the manager itself. These are defined by the
     * {AccessManager} documentation.
     */
    function canCall(
        address caller,
        address target,
        bytes4 selector
    ) external view returns (bool allowed, uint32 delay);

    /**
     * @dev Expiration delay for scheduled proposals. Defaults to 1 week.
     *
     * IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
     * disabling any scheduling usage.
     */
    function expiration() external view returns (uint32);

    /**
     * @dev Minimum setback for all delay updates, with the exception of execution delays. It
     * can be increased without setback (and reset via {revokeRole} in the case event of an
     * accidental increase). Defaults to 5 days.
     */
    function minSetback() external view returns (uint32);

    /**
     * @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
     *
     * NOTE: When the manager itself is closed, admin functions are still accessible to avoid locking the contract.
     */
    function isTargetClosed(address target) external view returns (bool);

    /**
     * @dev Get the role required to call a function.
     */
    function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);

    /**
     * @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
     */
    function getTargetAdminDelay(address target) external view returns (uint32);

    /**
     * @dev Get the id of the role that acts as an admin for the given role.
     *
     * The admin permission is required to grant the role, revoke the role and update the execution delay to execute
     * an operation that is restricted to this role.
     */
    function getRoleAdmin(uint64 roleId) external view returns (uint64);

    /**
     * @dev Get the role that acts as a guardian for a given role.
     *
     * The guardian permission allows canceling operations that have been scheduled under the role.
     */
    function getRoleGuardian(uint64 roleId) external view returns (uint64);

    /**
     * @dev Get the role current grant delay.
     *
     * Its value may change at any point without an event emitted following a call to {setGrantDelay}.
     * Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
     */
    function getRoleGrantDelay(uint64 roleId) external view returns (uint32);

    /**
     * @dev Get the access details for a given account for a given role. These details include the timepoint at which
     * membership becomes active, and the delay applied to all operation by this user that requires this permission
     * level.
     *
     * Returns:
     * [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
     * [1] Current execution delay for the account.
     * [2] Pending execution delay for the account.
     * [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
     */
    function getAccess(
        uint64 roleId,
        address account
    ) external view returns (uint48 since, uint32 currentDelay, uint32 pendingDelay, uint48 effect);

    /**
     * @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
     * permission might be associated with an execution delay. {getAccess} can provide more details.
     */
    function hasRole(uint64 roleId, address account) external view returns (bool isMember, uint32 executionDelay);

    /**
     * @dev Give a label to a role, for improved role discoverability by UIs.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleLabel} event.
     */
    function labelRole(uint64 roleId, string calldata label) external;

    /**
     * @dev Add `account` to `roleId`, or change its execution delay.
     *
     * This gives the account the authorization to call any function that is restricted to this role. An optional
     * execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
     * that is restricted to members of this role. The user will only be able to execute the operation after the delay has
     * passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
     *
     * If the account has already been granted this role, the execution delay will be updated. This update is not
     * immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
     * called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
     * operation executed in the 3 hours that follows this update was indeed scheduled before this update.
     *
     * Requirements:
     *
     * - the caller must be an admin for the role (see {getRoleAdmin})
     * - granted role must not be the `PUBLIC_ROLE`
     *
     * Emits a {RoleGranted} event.
     */
    function grantRole(uint64 roleId, address account, uint32 executionDelay) external;

    /**
     * @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
     * no effect.
     *
     * Requirements:
     *
     * - the caller must be an admin for the role (see {getRoleAdmin})
     * - revoked role must not be the `PUBLIC_ROLE`
     *
     * Emits a {RoleRevoked} event if the account had the role.
     */
    function revokeRole(uint64 roleId, address account) external;

    /**
     * @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
     * the role this call has no effect.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * Emits a {RoleRevoked} event if the account had the role.
     */
    function renounceRole(uint64 roleId, address callerConfirmation) external;

    /**
     * @dev Change admin role for a given role.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleAdminChanged} event
     */
    function setRoleAdmin(uint64 roleId, uint64 admin) external;

    /**
     * @dev Change guardian role for a given role.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleGuardianChanged} event
     */
    function setRoleGuardian(uint64 roleId, uint64 guardian) external;

    /**
     * @dev Update the delay for granting a `roleId`.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleGrantDelayChanged} event.
     */
    function setGrantDelay(uint64 roleId, uint32 newDelay) external;

    /**
     * @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {TargetFunctionRoleUpdated} event per selector.
     */
    function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;

    /**
     * @dev Set the delay for changing the configuration of a given target contract.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {TargetAdminDelayUpdated} event.
     */
    function setTargetAdminDelay(address target, uint32 newDelay) external;

    /**
     * @dev Set the closed flag for a contract.
     *
     * Closing the manager itself won't disable access to admin methods to avoid locking the contract.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {TargetClosed} event.
     */
    function setTargetClosed(address target, bool closed) external;

    /**
     * @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
     * operation is not yet scheduled, has expired, was executed, or was canceled.
     */
    function getSchedule(bytes32 id) external view returns (uint48);

    /**
     * @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
     * been scheduled.
     */
    function getNonce(bytes32 id) external view returns (uint32);

    /**
     * @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
     * choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
     * required for the caller. The special value zero will automatically set the earliest possible time.
     *
     * Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
     * the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
     * scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
     *
     * Emits a {OperationScheduled} event.
     *
     * NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
     * this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
     * contract if it is using standard Solidity ABI encoding.
     */
    function schedule(
        address target,
        bytes calldata data,
        uint48 when
    ) external returns (bytes32 operationId, uint32 nonce);

    /**
     * @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
     * execution delay is 0.
     *
     * Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
     * operation wasn't previously scheduled (if the caller doesn't have an execution delay).
     *
     * Emits an {OperationExecuted} event only if the call was scheduled and delayed.
     */
    function execute(address target, bytes calldata data) external payable returns (uint32);

    /**
     * @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
     * operation that is cancelled.
     *
     * Requirements:
     *
     * - the caller must be the proposer, a guardian of the targeted function, or a global admin
     *
     * Emits a {OperationCanceled} event.
     */
    function cancel(address caller, address target, bytes calldata data) external returns (uint32);

    /**
     * @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
     * (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
     *
     * This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
     * with all the verifications that it implies.
     *
     * Emit a {OperationExecuted} event.
     */
    function consumeScheduledOp(address caller, bytes calldata data) external;

    /**
     * @dev Hashing function for delayed operations.
     */
    function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);

    /**
     * @dev Changes the authority of a target managed by this manager instance.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     */
    function updateAuthority(address target, address newAuthority) external;
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/IAccessManaged.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/manager/IAccessManaged.sol)

pragma solidity >=0.8.4;

interface IAccessManaged {
    /**
     * @dev Authority that manages this contract was updated.
     */
    event AuthorityUpdated(address authority);

    error AccessManagedUnauthorized(address caller);
    error AccessManagedRequiredDelay(address caller, uint32 delay);
    error AccessManagedInvalidAuthority(address authority);

    /**
     * @dev Returns the current authority.
     */
    function authority() external view returns (address);

    /**
     * @dev Transfers control to a new authority. The caller must be the current authority.
     */
    function setAuthority(address) external;

    /**
     * @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
     * being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
     * attacker controlled calls.
     */
    function isConsumingScheduledOp() external view returns (bytes4);
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/interfaces/IERC1363.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)

pragma solidity >=0.6.2;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/IAuthority.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/manager/IAuthority.sol)

pragma solidity >=0.4.16;

/**
 * @dev Standard interface for permissioning originally defined in Dappsys.
 */
interface IAuthority {
    /**
     * @dev Returns true if the caller can invoke on a target the function identified by a function selector.
     */
    function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed);
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/interfaces/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)

pragma solidity >=0.4.16;

import {IERC20} from "../token/ERC20/IERC20.sol";
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/interfaces/IERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)

pragma solidity >=0.4.16;

import {IERC165} from "../utils/introspection/IERC165.sol";
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/utils/introspection/IERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
    }
  },
  "settings": {
    "remappings": [
      "@chainlink/=smart-contracts-public/lib/chainlink/",
      "@openzeppelin/contracts/=smart-contracts-public/lib/openzeppelin-contracts/contracts/",
      "@openzeppelin/contracts-upgradeable/=smart-contracts-public/lib/openzeppelin-contracts-upgradeable/contracts/",
      "forge-std/=smart-contracts-public/lib/forge-std/src/",
      "openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/",
      "chainlink/=smart-contracts-public/lib/chainlink/",
      "erc4626-tests/=smart-contracts-public/lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
      "halmos-cheatcodes/=smart-contracts-public/lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
      "openzeppelin-contracts-upgradeable/=smart-contracts-public/lib/openzeppelin-contracts-upgradeable/",
      "openzeppelin-contracts/=smart-contracts-public/lib/openzeppelin-contracts/"
    ],
    "optimizer": {
      "enabled": true,
      "runs": 500
    },
    "metadata": {
      "useLiteralContent": false,
      "bytecodeHash": "ipfs",
      "appendCBOR": true
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    },
    "evmVersion": "cancun",
    "viaIR": true
  }
}}

Tags:
ERC20, ERC165, Proxy, Voting, Upgradeable, Factory, Oracle|addr:0x603892a59967c3fc0dd452018a5a786e8ce420c4|verified:true|block:23477399|tx:0x35bdf77a6fb652dcd85b95539201c7ff19f4605fd061e9ac044363492089da18|first_check:1759258196

Submitted on: 2025-09-30 20:49:57

Comments

Log in to comment.

No comments yet.