RedemptionReserveCalculator

Description:

Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "smart-contracts-public/src/pricing/RedemptionReserveCalculator.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;

import "../pricing/PriceRouter.sol";
import "../redemption/PayoutTokenRegistry.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "./IRedemptionReserves.sol";

/**
 * @title RedemptionReserveCalculator
 * @notice Calculates total value of tokens available for redemptions
 * @dev Only counts tokens in vault and custodial wallet (redemption reserves)
 */
contract RedemptionReserveCalculator is IRedemptionReserves {
    // ============ Immutable State ============
    PriceRouter public immutable redemptionReservePriceRouter;
    PayoutTokenRegistry public immutable tokenRegistry;

    // ============ Errors ============
    error InvalidAddress();
    error InvalidDecimals();

    // ============ Constructor ============

    /**
     * @notice Initialize calculator with price router and token registry
     * @param _priceRouter Address of the PriceRouter for reserve pricing
     * @param _tokenRegistry Address of the PayoutTokenRegistry
     */
    constructor(address _priceRouter, address _tokenRegistry) {
        if (_priceRouter == address(0)) revert InvalidAddress();
        if (_tokenRegistry == address(0)) revert InvalidAddress();

        redemptionReservePriceRouter = PriceRouter(_priceRouter);
        tokenRegistry = PayoutTokenRegistry(_tokenRegistry);
    }

    // ============ View Functions ============

    /**
     * @notice Calculate total value of redemption reserves
     * @param vault Primary storage for redemption reserves
     * @param custodialWallet Secondary storage (e.g., Fireblocks)
     * @return totalReserveValue Total USD value in WAD format (18 decimals)
     */
    function calculateTotalReserveValue(address vault, address custodialWallet)
        external
        view
        returns (uint256 totalReserveValue)
    {
        // Get all value tokens from registry
        address[] memory valueTokens = tokenRegistry.getValueTokens();

        for (uint256 i; i < valueTokens.length; i++) {
            address token = valueTokens[i];

            // Get combined balance from both locations
            uint256 balance =
                IERC20(token).balanceOf(vault) + IERC20(token).balanceOf(custodialWallet);

            if (balance > 0) {
                // Get price in WAD format from router
                // Skip if price feed not configured (will revert in getPrice)
                try redemptionReservePriceRouter.getPrice(token) returns (uint256 priceWad) {
                    uint8 decimals = IERC20Metadata(token).decimals();
                    if (decimals > 24) revert InvalidDecimals();

                    // Calculate value: balance * price / 10^decimals
                    // Price is in WAD (18 decimals), so result is in WAD
                    totalReserveValue += Math.mulDiv(balance, priceWad, 10 ** decimals);
                } catch {
                    // Skip tokens without configured price feeds
                    continue;
                }
            }
        }
        return totalReserveValue;
    }
}
"
    },
    "smart-contracts-public/src/pricing/PriceRouter.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;

import "@openzeppelin/contracts/access/manager/AccessManaged.sol";
import "../pricing/IPriceOracle.sol";

/**
 * @title PriceRouter
 * @notice Registry from token → {IPriceOracle}. Used across deposit/redemption/reserve contexts.
 * @dev Returns prices in WAD (1e18). Only VALID or CAPPED statuses are accepted; STALE reverts.
 *
 * **Security**
 * - Oracle assignment is gated by {AccessManaged}. Misconfiguration will cause hard reverts,
 *   which is preferable to using unsafe prices.
 */
contract PriceRouter is AccessManaged {
    // ============ Constants ============
    // Role identifier for backward compatibility (informational only)
    bytes32 public constant CONFIG_ROLE = keccak256("CONFIG_ROLE");

    // ============ State ============
    mapping(address => IPriceOracle) public priceFeeds;
    string public description;

    // ============ Events ============
    event PriceFeedSet(address indexed token, address indexed feed);
    event PriceFeedRemoved(address indexed token);

    // ============ Errors ============
    error TokenNotConfigured();
    error InvalidPriceFeed();
    error StalePrice();
    error InvalidPrice();

    // ============ Constructor ============

    /**
     * @notice Initialize the price router
     * @param _accessManager Address of the AccessManager contract
     * @param _description Human-readable description of this router instance
     */
    constructor(address _accessManager, string memory _description) AccessManaged(_accessManager) {
        description = _description;
    }

    // ============ Configuration Functions ============

    /**
     * @notice Set the price feed for a token
     * @param token Token address
     * @param feed Price oracle address
     */
    function setPriceFeed(address token, address feed) external restricted {
        if (feed == address(0)) revert InvalidPriceFeed();
        priceFeeds[token] = IPriceOracle(feed);
        emit PriceFeedSet(token, feed);
    }

    /**
     * @notice Remove the price feed for a token
     * @param token Token address
     */
    function removePriceFeed(address token) external restricted {
        delete priceFeeds[token];
        emit PriceFeedRemoved(token);
    }

    // ============ View Functions ============

    /**
     * @notice Get the current price of a token
     * @param token Token address
     * @return Price in WAD format (18 decimals)
     */
    function getPrice(address token) external view returns (uint256) {
        IPriceOracle feed = priceFeeds[token];
        if (address(feed) == address(0)) revert TokenNotConfigured();

        IPriceOracle.PriceInfo memory info = feed.latestPriceInfo();

        // Check for stale price first
        if (info.status == IPriceOracle.PriceStatus.STALE) {
            revert StalePrice();
        }

        // Accept VALID and CAPPED prices
        if (
            info.status != IPriceOracle.PriceStatus.VALID
                && info.status != IPriceOracle.PriceStatus.CAPPED
        ) {
            revert InvalidPrice();
        }

        return info.price;
    }

    /**
     * @notice Check if a price feed is configured for a token
     * @param token Token address
     * @return True if a price feed is configured
     */
    function hasPrice(address token) external view returns (bool) {
        return address(priceFeeds[token]) != address(0);
    }
}
"
    },
    "smart-contracts-public/src/redemption/PayoutTokenRegistry.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;

import "@openzeppelin/contracts/access/manager/AccessManaged.sol";

/**
 * @title PayoutTokenRegistry
 * @notice Tracks the set of tokens that contribute to reserves and manages the active payout token.
 * @dev Pricing is delegated to {PriceRouter}; this contract only records eligibility and schedules switches.
 *
 * - `valueTokens`: tokens whose balances count toward total redemption reserves.
 * - `activePayoutToken`: token actually paid out by redemption modules.
 * - `scheduledPayoutToken`: pending token to become active at next UTC midnight (`switchTime`).
 *
 * **Security considerations**
 * - Only authorized operators (via {AccessManaged}) may configure or switch tokens.
 * - `emergencySwitch` bypasses the schedule and should be protected by a guardian role.
 */
contract PayoutTokenRegistry is AccessManaged {
    // ============ Constants ============
    // Role identifiers for backward compatibility (informational only)
    bytes32 public constant ADMIN_ROLE = keccak256("ADMIN_ROLE");
    bytes32 public constant EMERGENCY_ROLE = keccak256("EMERGENCY_ROLE");

    uint256 public constant MAX_VALUE_TOKENS = 20;
    uint256 private constant SECONDS_PER_DAY = 86400;

    // ============ Types ============
    struct TokenConfig {
        bool inValueSet; // Contributes to total value
        bool payoutEligible; // Can be active payout token
    }

    // ============ State ============
    mapping(address => TokenConfig) public tokenConfigs;
    address[] public valueTokens;

    address public activePayoutToken;
    address public scheduledPayoutToken;
    uint256 public switchTime;

    // ============ Events ============
    event TokenConfigured(address indexed token, bool inValueSet, bool payoutEligible);
    event TokenRemoved(address indexed token);
    event PayoutTokenScheduled(address indexed token, uint256 switchTime);
    event PayoutTokenSwitched(address indexed previousToken, address indexed newToken);
    event EmergencySwitch(address indexed token);

    // ============ Errors ============
    error InvalidToken();
    error TokenNotConfigured();
    error TokenNotEligible();
    error TooSoonToSwitch();
    error NoScheduledSwitch();
    error AlreadyActive();
    error TooManyTokens();
    error CannotRemoveActiveToken();
    error CannotRemoveScheduledToken();

    // ============ Constructor ============

    /**
     * @notice Initialize the registry with AccessManager
     * @param _accessManager Address of the AccessManager contract
     */
    constructor(address _accessManager) AccessManaged(_accessManager) {
        // Role setup is handled in AccessManager
    }

    // ============ Admin Functions ============

    /**
     * @notice Configure a token's value set and payout eligibility
     * @param token Token address
     * @param inValueSet Whether token contributes to total value
     * @param payoutEligible Whether token can be active payout token
     */
    function setTokenConfig(address token, bool inValueSet, bool payoutEligible)
        external
        restricted
    {
        if (token == address(0)) revert InvalidToken();

        TokenConfig memory oldConfig = tokenConfigs[token];

        // Handle value set changes
        if (inValueSet && !oldConfig.inValueSet) {
            // Adding to value set
            if (valueTokens.length >= MAX_VALUE_TOKENS) revert TooManyTokens();
            valueTokens.push(token);
        } else if (!inValueSet && oldConfig.inValueSet) {
            // Removing from value set
            _removeFromValueSet(token);
        }

        tokenConfigs[token] = TokenConfig(inValueSet, payoutEligible);
        emit TokenConfigured(token, inValueSet, payoutEligible);
    }

    /**
     * @notice Remove a token entirely
     * @param token Token to remove
     */
    function removeToken(address token) external restricted {
        if (token == activePayoutToken) revert CannotRemoveActiveToken();
        if (token == scheduledPayoutToken) revert CannotRemoveScheduledToken();

        if (tokenConfigs[token].inValueSet) {
            _removeFromValueSet(token);
        }

        delete tokenConfigs[token];
        emit TokenRemoved(token);
    }

    /**
     * @notice Schedule a payout token change for next UTC midnight
     * @param token Token to become active payout
     */
    function schedulePayoutToken(address token) external restricted {
        TokenConfig memory config = tokenConfigs[token];
        if (!config.inValueSet && !config.payoutEligible) revert TokenNotConfigured();
        if (!config.payoutEligible) revert TokenNotEligible();
        if (token == activePayoutToken) revert AlreadyActive();

        // Schedule for next UTC midnight
        uint256 currentDay = block.timestamp / SECONDS_PER_DAY;
        uint256 nextMidnight = (currentDay + 1) * SECONDS_PER_DAY;

        scheduledPayoutToken = token;
        switchTime = nextMidnight;

        emit PayoutTokenScheduled(token, nextMidnight);
    }

    /**
     * @notice Execute scheduled payout token switch
     * @dev Callable by anyone after switchTime
     */
    function executeSwitch() external {
        if (block.timestamp < switchTime) revert TooSoonToSwitch();
        if (scheduledPayoutToken == address(0)) revert NoScheduledSwitch();

        // Validate token is STILL eligible
        TokenConfig memory config = tokenConfigs[scheduledPayoutToken];
        if (!config.payoutEligible) revert TokenNotEligible();

        address previousToken = activePayoutToken;
        activePayoutToken = scheduledPayoutToken;
        scheduledPayoutToken = address(0);
        switchTime = 0;

        emit PayoutTokenSwitched(previousToken, activePayoutToken);
    }

    /**
     * @notice Emergency switch to new payout token
     * @param token Token to activate immediately
     */
    function emergencySwitch(address token) external restricted {
        TokenConfig memory config = tokenConfigs[token];
        if (!config.payoutEligible) revert TokenNotEligible();

        address previousToken = activePayoutToken;
        activePayoutToken = token;

        // Clear any scheduled switch
        scheduledPayoutToken = address(0);
        switchTime = 0;

        emit EmergencySwitch(token);
        emit PayoutTokenSwitched(previousToken, token);
    }

    // ============ View Functions ============

    /**
     * @notice Check if token is in value set
     * @param token Token to check
     * @return True if token contributes to total value
     */
    function isValueToken(address token) external view returns (bool) {
        return tokenConfigs[token].inValueSet;
    }

    /**
     * @notice Check if token can be payout token
     * @param token Token to check
     * @return True if eligible for payout
     */
    function isPayoutEligible(address token) external view returns (bool) {
        return tokenConfigs[token].payoutEligible;
    }

    /**
     * @notice Get all value tokens
     * @return Array of tokens in value set
     */
    function getValueTokens() external view returns (address[] memory) {
        return valueTokens;
    }

    /**
     * @notice Get value token count
     * @return Number of tokens in value set
     */
    function getValueTokenCount() external view returns (uint256) {
        return valueTokens.length;
    }

    // ============ Internal Functions ============

    /**
     * @notice Remove token from value tokens array
     * @param token Token to remove
     */
    function _removeFromValueSet(address token) private {
        uint256 length = valueTokens.length;
        for (uint256 i; i < length; i++) {
            if (valueTokens[i] == token) {
                valueTokens[i] = valueTokens[length - 1];
                valueTokens.pop();
                return;
            }
        }
    }
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "smart-contracts-public/src/pricing/IRedemptionReserves.sol": {
      "content": "pragma solidity 0.8.30;

/**
 * @title IRedemptionReserves
 * @notice Standardized redemption reserves interface returning WAD‑scaled reserves
 */
interface IRedemptionReserves {
    /**
     * @notice Retrieves the total value of redemption reserves
     * @param vault Primary storage for redemption reserves
     * @param custodialWallet Secondary storage (e.g., Fireblocks)
     * @return uint256 Total value of redemption reserves
     */
    function calculateTotalReserveValue(address vault, address custodialWallet) external view returns (uint256);
   
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/access/manager/AccessManaged.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/manager/AccessManaged.sol)

pragma solidity ^0.8.20;

import {AuthorityUtils} from "./AuthorityUtils.sol";
import {IAccessManager} from "./IAccessManager.sol";
import {IAccessManaged} from "./IAccessManaged.sol";
import {Context} from "../../utils/Context.sol";

/**
 * @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
 * permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
 * implementing a policy that allows certain callers to access certain functions.
 *
 * IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
 * functions, and ideally only used in `external` functions. See {restricted}.
 */
abstract contract AccessManaged is Context, IAccessManaged {
    address private _authority;

    bool private _consumingSchedule;

    /**
     * @dev Initializes the contract connected to an initial authority.
     */
    constructor(address initialAuthority) {
        _setAuthority(initialAuthority);
    }

    /**
     * @dev Restricts access to a function as defined by the connected Authority for this contract and the
     * caller and selector of the function that entered the contract.
     *
     * [IMPORTANT]
     * ====
     * In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
     * functions that are used as external entry points and are not called internally. Unless you know what you're
     * doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
     * implications! This is because the permissions are determined by the function that entered the contract, i.e. the
     * function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
     * ====
     *
     * [WARNING]
     * ====
     * Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
     * function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
     * functions are the only execution paths where a function selector cannot be unambiguously determined from the calldata
     * since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
     * if no calldata is provided. (See {_checkCanCall}).
     *
     * The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
     * ====
     */
    modifier restricted() {
        _checkCanCall(_msgSender(), _msgData());
        _;
    }

    /// @inheritdoc IAccessManaged
    function authority() public view virtual returns (address) {
        return _authority;
    }

    /// @inheritdoc IAccessManaged
    function setAuthority(address newAuthority) public virtual {
        address caller = _msgSender();
        if (caller != authority()) {
            revert AccessManagedUnauthorized(caller);
        }
        if (newAuthority.code.length == 0) {
            revert AccessManagedInvalidAuthority(newAuthority);
        }
        _setAuthority(newAuthority);
    }

    /// @inheritdoc IAccessManaged
    function isConsumingScheduledOp() public view returns (bytes4) {
        return _consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
    }

    /**
     * @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
     * permissions set by the current authority.
     */
    function _setAuthority(address newAuthority) internal virtual {
        _authority = newAuthority;
        emit AuthorityUpdated(newAuthority);
    }

    /**
     * @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
     * is less than 4 bytes long.
     */
    function _checkCanCall(address caller, bytes calldata data) internal virtual {
        (bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
            authority(),
            caller,
            address(this),
            bytes4(data[0:4])
        );
        if (!immediate) {
            if (delay > 0) {
                _consumingSchedule = true;
                IAccessManager(authority()).consumeScheduledOp(caller, data);
                _consumingSchedule = false;
            } else {
                revert AccessManagedUnauthorized(caller);
            }
        }
    }
}
"
    },
    "smart-contracts-public/src/pricing/IPriceOracle.sol": {
      "content": "pragma solidity 0.8.30;

/**
 * @title IPriceOracle
 * @notice Standardized price oracle interface returning WAD‑scaled prices with a status code.
 * @dev Prices MUST be scaled to 1e18 (WAD). Implementations can surface status information such as
 * validity, staleness, capping, or circuit breaker activation.
 */
interface IPriceOracle {
    enum PriceStatus {
        VALID,
        CAPPED,
        INVALID,
        STALE,
        VOLATILE,
        CIRCUIT_BREAKER
    }

    struct PriceInfo {
        uint256 price;
        PriceStatus status;
    }

    /**
     * @notice Retrieves the latest price information for the configured token
     * @return PriceInfo Struct containing the price and its status
     */
    function latestPriceInfo() external view returns (PriceInfo memory);

    /**
     * @notice Retrieves the number of decimals for the token's price feed
     * @return uint8 Number of decimals
     */
    function decimals() external view returns (uint8);
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/utils/Panic.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}
"
    },
    "smart-contracts-public/lib/openzeppelin-contracts/contracts/utils/math/SafeCast.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure retu

Tags:
ERC20, Proxy, Voting, Upgradeable, Factory, Oracle|addr:0x7e499842e7634cce793ffd5d44383bb4a2f086e0|verified:true|block:23477708|tx:0xf8e724cd55b460dc8f41287be3c994b0bd63b7d550bcca4be69ee926ccf5c7a9|first_check:1759314649

Submitted on: 2025-10-01 12:30:49

Comments

Log in to comment.

No comments yet.