ShadowQueueAprOracle

Description:

Decentralized Finance (DeFi) protocol contract providing Mintable, Yield, Factory, Oracle functionality.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/AprOracle/ShadowQueueAprOracle.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;

import {Governance} from "../utils/Governance.sol";
import {IVault} from "@yearn-vaults/interfaces/IVault.sol";
import {IStrategy} from "@tokenized-strategy/interfaces/IStrategy.sol";

interface IOracle {
    function getStrategyApr(address, int256) external view returns (uint256);
}

/**
 *  @title Shadow Queue APR Oracle
 *  @author Yearn.finance
 *  @dev Contract to retrieve the expected APRs of V3 vaults with strategies outside of the default queue.
 *
 *  NOTE: All values are just at the specific time called and subject
 *  to change.
 */

contract ShadowQueueAprOracle is Governance {
    /// @notice Mapping of a vault to the strategies outside its queue.
    /// @dev Strategies must be manually updated here if they change on the vault.
    mapping(address vault => address[] strategiesOutsideQueue)
        public extraStrategies;

    IOracle public constant CORE_ORACLE =
        IOracle(0x1981AD9F44F2EA9aDd2dC4AD7D075c102C70aF92);

    uint256 internal constant MAX_BPS = 10_000;

    constructor(address _governance) Governance(_governance) {}

    /**
     * @notice Get the current APR a vault is earning, including strategies outside of the default queue.
     *
     * This will return the APR the vault is currently earning from strategies that
     * has yet to be reported.
     *
     * @param _vault Address of the vault to check.
     * @param _debtChange Positive or negative change in debt.
     * @return apr The expected APR it will be earning represented as 1e18.
     */
    function aprAfterDebtChange(
        address _vault,
        int256 _debtChange
    ) external view virtual returns (uint256 apr) {
        // Get the shadow queue set for this specific strategy.
        address[] memory strategiesOutsideQueue = extraStrategies[_vault];
        address[] memory strategies = IVault(_vault).get_default_queue();

        uint256 totalAssets = IVault(_vault).totalAssets();
        uint256 totalApr = 0;
        for (uint256 i = 0; i < strategies.length; i++) {
            // make sure we're not double-counting, compare our two arrays for duplicates
            for (uint256 j; j < strategiesOutsideQueue.length; ++j) {
                require(
                    strategies[i] != strategiesOutsideQueue[j],
                    "Duplicate strategy"
                );
            }

            uint256 debt = IVault(_vault)
                .strategies(strategies[i])
                .current_debt;

            if (debt == 0) continue;

            // Get a performance fee if the strategy has one.
            (bool success, bytes memory fee) = strategies[i].staticcall(
                abi.encodeWithSelector(
                    IStrategy(strategies[i]).performanceFee.selector
                )
            );

            uint256 performanceFee;
            if (success) {
                performanceFee = abi.decode(fee, (uint256));
            }

            // Get the effective debt change for the strategy.
            int256 debtChange = (_debtChange * int256(debt)) /
                int256(totalAssets);

            // Add the weighted apr of the strategy to the total apr.
            totalApr +=
                (CORE_ORACLE.getStrategyApr(strategies[i], debtChange) *
                    uint256(int256(debt) + debtChange) *
                    (MAX_BPS - performanceFee)) /
                MAX_BPS;
        }

        for (uint256 i = 0; i < strategiesOutsideQueue.length; i++) {
            uint256 debt = IVault(_vault)
                .strategies(strategiesOutsideQueue[i])
                .current_debt;

            if (debt == 0) continue;

            // Get a performance fee if the strategy has one.
            (bool success, bytes memory fee) = strategiesOutsideQueue[i]
                .staticcall(
                    abi.encodeWithSelector(
                        IStrategy(strategiesOutsideQueue[i])
                            .performanceFee
                            .selector
                    )
                );

            uint256 performanceFee;
            if (success) {
                performanceFee = abi.decode(fee, (uint256));
            }

            // Get the effective debt change for the strategy.
            int256 debtChange = (_debtChange * int256(debt)) /
                int256(totalAssets);

            // Add the weighted apr of the strategy to the total apr.
            totalApr +=
                (CORE_ORACLE.getStrategyApr(
                    strategiesOutsideQueue[i],
                    debtChange
                ) *
                    uint256(int256(debt) + debtChange) *
                    (MAX_BPS - performanceFee)) /
                MAX_BPS;
        }

        // Divide by the total assets to get apr as 1e18.
        return totalApr / uint256(int256(totalAssets) + _debtChange);
    }

    /**
     * @notice Set the array of strategies outside the default queue for a given vault.
     * @dev Can only be called by the oracle's `governance`.
     *
     * @param _vault Address of the vault.
     * @param _shadowQueue Array of attached strategies that are outside of the default queue.
     */
    function setExtraStrategies(
        address _vault,
        address[] memory _shadowQueue
    ) external virtual onlyGovernance {
        // make sure each strategy is attached to the vault
        IVault vault = IVault(_vault);
        for (uint256 i = 0; i < _shadowQueue.length; i++) {
            require(
                vault.strategies(_shadowQueue[i]).activation > 0,
                "!activated"
            );
        }
        extraStrategies[_vault] = _shadowQueue;
    }
}
"
    },
    "src/utils/Governance.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;

contract Governance {
    /// @notice Emitted when the governance address is updated.
    event GovernanceTransferred(
        address indexed previousGovernance,
        address indexed newGovernance
    );

    modifier onlyGovernance() {
        _checkGovernance();
        _;
    }

    /// @notice Checks if the msg sender is the governance.
    function _checkGovernance() internal view virtual {
        require(governance == msg.sender, "!governance");
    }

    /// @notice Address that can set the default base fee and provider
    address public governance;

    constructor(address _governance) {
        governance = _governance;

        emit GovernanceTransferred(address(0), _governance);
    }

    /**
     * @notice Sets a new address as the governance of the contract.
     * @dev Throws if the caller is not current governance.
     * @param _newGovernance The new governance address.
     */
    function transferGovernance(
        address _newGovernance
    ) external virtual onlyGovernance {
        require(_newGovernance != address(0), "ZERO ADDRESS");
        address oldGovernance = governance;
        governance = _newGovernance;

        emit GovernanceTransferred(oldGovernance, _newGovernance);
    }
}
"
    },
    "lib/yearn-vaults-v3/contracts/interfaces/IVault.sol": {
      "content": "// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.8.18;

import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";

interface IVault is IERC4626 {
    // STRATEGY EVENTS
    event StrategyChanged(address indexed strategy, uint256 change_type);
    event StrategyReported(
        address indexed strategy,
        uint256 gain,
        uint256 loss,
        uint256 current_debt,
        uint256 protocol_fees,
        uint256 total_fees,
        uint256 total_refunds
    );
    // DEBT MANAGEMENT EVENTS
    event DebtUpdated(
        address indexed strategy,
        uint256 current_debt,
        uint256 new_debt
    );
    // ROLE UPDATES
    event RoleSet(address indexed account, uint256 role);
    event UpdateFutureRoleManager(address indexed future_role_manager);
    event UpdateRoleManager(address indexed role_manager);

    event UpdateAccountant(address indexed accountant);
    event UpdateDefaultQueue(address[] new_default_queue);
    event UpdateUseDefaultQueue(bool use_default_queue);
    event UpdatedMaxDebtForStrategy(
        address indexed sender,
        address indexed strategy,
        uint256 new_debt
    );
    event UpdateAutoAllocate(bool auto_allocate);
    event UpdateDepositLimit(uint256 deposit_limit);
    event UpdateMinimumTotalIdle(uint256 minimum_total_idle);
    event UpdateProfitMaxUnlockTime(uint256 profit_max_unlock_time);
    event DebtPurchased(address indexed strategy, uint256 amount);
    event Shutdown();

    struct StrategyParams {
        uint256 activation;
        uint256 last_report;
        uint256 current_debt;
        uint256 max_debt;
    }

    function FACTORY() external view returns (uint256);

    function strategies(address) external view returns (StrategyParams memory);

    function default_queue(uint256) external view returns (address);

    function use_default_queue() external view returns (bool);

    function auto_allocate() external view returns (bool);

    function minimum_total_idle() external view returns (uint256);

    function deposit_limit() external view returns (uint256);

    function deposit_limit_module() external view returns (address);

    function withdraw_limit_module() external view returns (address);

    function accountant() external view returns (address);

    function roles(address) external view returns (uint256);

    function role_manager() external view returns (address);

    function future_role_manager() external view returns (address);

    function isShutdown() external view returns (bool);

    function nonces(address) external view returns (uint256);

    function initialize(
        address,
        string memory,
        string memory,
        address,
        uint256
    ) external;

    function setName(string memory) external;

    function setSymbol(string memory) external;

    function set_accountant(address new_accountant) external;

    function set_default_queue(address[] memory new_default_queue) external;

    function set_use_default_queue(bool) external;

    function set_auto_allocate(bool) external;

    function set_deposit_limit(uint256 deposit_limit) external;

    function set_deposit_limit(
        uint256 deposit_limit,
        bool should_override
    ) external;

    function set_deposit_limit_module(
        address new_deposit_limit_module
    ) external;

    function set_deposit_limit_module(
        address new_deposit_limit_module,
        bool should_override
    ) external;

    function set_withdraw_limit_module(
        address new_withdraw_limit_module
    ) external;

    function set_minimum_total_idle(uint256 minimum_total_idle) external;

    function setProfitMaxUnlockTime(
        uint256 new_profit_max_unlock_time
    ) external;

    function set_role(address account, uint256 role) external;

    function add_role(address account, uint256 role) external;

    function remove_role(address account, uint256 role) external;

    function transfer_role_manager(address role_manager) external;

    function accept_role_manager() external;

    function unlockedShares() external view returns (uint256);

    function pricePerShare() external view returns (uint256);

    function get_default_queue() external view returns (address[] memory);

    function process_report(
        address strategy
    ) external returns (uint256, uint256);

    function buy_debt(address strategy, uint256 amount) external;

    function add_strategy(address new_strategy) external;

    function revoke_strategy(address strategy) external;

    function force_revoke_strategy(address strategy) external;

    function update_max_debt_for_strategy(
        address strategy,
        uint256 new_max_debt
    ) external;

    function update_debt(
        address strategy,
        uint256 target_debt
    ) external returns (uint256);

    function update_debt(
        address strategy,
        uint256 target_debt,
        uint256 max_loss
    ) external returns (uint256);

    function shutdown_vault() external;

    function totalIdle() external view returns (uint256);

    function totalDebt() external view returns (uint256);

    function apiVersion() external view returns (string memory);

    function assess_share_of_unrealised_losses(
        address strategy,
        uint256 assets_needed
    ) external view returns (uint256);

    function profitMaxUnlockTime() external view returns (uint256);

    function fullProfitUnlockDate() external view returns (uint256);

    function profitUnlockingRate() external view returns (uint256);

    function lastProfitUpdate() external view returns (uint256);

    //// NON-STANDARD ERC-4626 FUNCTIONS \\\\

    function withdraw(
        uint256 assets,
        address receiver,
        address owner,
        uint256 max_loss
    ) external returns (uint256);

    function withdraw(
        uint256 assets,
        address receiver,
        address owner,
        uint256 max_loss,
        address[] memory strategies
    ) external returns (uint256);

    function redeem(
        uint256 shares,
        address receiver,
        address owner,
        uint256 max_loss
    ) external returns (uint256);

    function redeem(
        uint256 shares,
        address receiver,
        address owner,
        uint256 max_loss,
        address[] memory strategies
    ) external returns (uint256);

    function maxWithdraw(
        address owner,
        uint256 max_loss
    ) external view returns (uint256);

    function maxWithdraw(
        address owner,
        uint256 max_loss,
        address[] memory strategies
    ) external view returns (uint256);

    function maxRedeem(
        address owner,
        uint256 max_loss
    ) external view returns (uint256);

    function maxRedeem(
        address owner,
        uint256 max_loss,
        address[] memory strategies
    ) external view returns (uint256);

    //// NON-STANDARD ERC-20 FUNCTIONS \\\\

    function DOMAIN_SEPARATOR() external view returns (bytes32);

    function permit(
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external returns (bool);
}
"
    },
    "lib/tokenized-strategy/src/interfaces/IStrategy.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;

import {ITokenizedStrategy} from "./ITokenizedStrategy.sol";
import {IBaseStrategy} from "./IBaseStrategy.sol";

interface IStrategy is IBaseStrategy, ITokenizedStrategy {}
"
    },
    "lib/openzeppelin-contracts/contracts/interfaces/IERC4626.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.0;

import "../token/ERC20/IERC20.sol";
import "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 *
 * _Available since v4.7._
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}
"
    },
    "lib/tokenized-strategy/src/interfaces/ITokenizedStrategy.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";

// Interface that implements the 4626 standard and the implementation functions
interface ITokenizedStrategy is IERC4626, IERC20Permit {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event StrategyShutdown();

    event NewTokenizedStrategy(
        address indexed strategy,
        address indexed asset,
        string apiVersion
    );

    event Reported(
        uint256 profit,
        uint256 loss,
        uint256 protocolFees,
        uint256 performanceFees
    );

    event UpdatePerformanceFeeRecipient(
        address indexed newPerformanceFeeRecipient
    );

    event UpdateKeeper(address indexed newKeeper);

    event UpdatePerformanceFee(uint16 newPerformanceFee);

    event UpdateManagement(address indexed newManagement);

    event UpdateEmergencyAdmin(address indexed newEmergencyAdmin);

    event UpdateProfitMaxUnlockTime(uint256 newProfitMaxUnlockTime);

    event UpdatePendingManagement(address indexed newPendingManagement);

    /*//////////////////////////////////////////////////////////////
                           INITIALIZATION
    //////////////////////////////////////////////////////////////*/

    function initialize(
        address _asset,
        string memory _name,
        address _management,
        address _performanceFeeRecipient,
        address _keeper
    ) external;

    /*//////////////////////////////////////////////////////////////
                    NON-STANDARD 4626 OPTIONS
    //////////////////////////////////////////////////////////////*/

    function withdraw(
        uint256 assets,
        address receiver,
        address owner,
        uint256 maxLoss
    ) external returns (uint256);

    function redeem(
        uint256 shares,
        address receiver,
        address owner,
        uint256 maxLoss
    ) external returns (uint256);

    function maxWithdraw(
        address owner,
        uint256 /*maxLoss*/
    ) external view returns (uint256);

    function maxRedeem(
        address owner,
        uint256 /*maxLoss*/
    ) external view returns (uint256);

    /*//////////////////////////////////////////////////////////////
                        MODIFIER HELPERS
    //////////////////////////////////////////////////////////////*/

    function requireManagement(address _sender) external view;

    function requireKeeperOrManagement(address _sender) external view;

    function requireEmergencyAuthorized(address _sender) external view;

    /*//////////////////////////////////////////////////////////////
                        KEEPERS FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function tend() external;

    function report() external returns (uint256 _profit, uint256 _loss);

    /*//////////////////////////////////////////////////////////////
                        CONSTANTS
    //////////////////////////////////////////////////////////////*/

    function MAX_FEE() external view returns (uint16);

    function FACTORY() external view returns (address);

    /*//////////////////////////////////////////////////////////////
                            GETTERS
    //////////////////////////////////////////////////////////////*/

    function apiVersion() external view returns (string memory);

    function pricePerShare() external view returns (uint256);

    function management() external view returns (address);

    function pendingManagement() external view returns (address);

    function keeper() external view returns (address);

    function emergencyAdmin() external view returns (address);

    function performanceFee() external view returns (uint16);

    function performanceFeeRecipient() external view returns (address);

    function fullProfitUnlockDate() external view returns (uint256);

    function profitUnlockingRate() external view returns (uint256);

    function profitMaxUnlockTime() external view returns (uint256);

    function lastReport() external view returns (uint256);

    function isShutdown() external view returns (bool);

    function unlockedShares() external view returns (uint256);

    /*//////////////////////////////////////////////////////////////
                            SETTERS
    //////////////////////////////////////////////////////////////*/

    function setPendingManagement(address) external;

    function acceptManagement() external;

    function setKeeper(address _keeper) external;

    function setEmergencyAdmin(address _emergencyAdmin) external;

    function setPerformanceFee(uint16 _performanceFee) external;

    function setPerformanceFeeRecipient(
        address _performanceFeeRecipient
    ) external;

    function setProfitMaxUnlockTime(uint256 _profitMaxUnlockTime) external;

    function setName(string calldata _newName) external;

    function shutdownStrategy() external;

    function emergencyWithdraw(uint256 _amount) external;
}
"
    },
    "lib/tokenized-strategy/src/interfaces/IBaseStrategy.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;

interface IBaseStrategy {
    function tokenizedStrategyAddress() external view returns (address);

    /*//////////////////////////////////////////////////////////////
                            IMMUTABLE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function availableDepositLimit(
        address _owner
    ) external view returns (uint256);

    function availableWithdrawLimit(
        address _owner
    ) external view returns (uint256);

    function deployFunds(uint256 _assets) external;

    function freeFunds(uint256 _amount) external;

    function harvestAndReport() external returns (uint256);

    function tendThis(uint256 _totalIdle) external;

    function shutdownWithdraw(uint256 _amount) external;

    function tendTrigger() external view returns (bool, bytes memory);
}
"
    },
    "lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
"
    },
    "lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
"
    },
    "lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
"
    },
    "lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
"
    }
  },
  "settings": {
    "remappings": [
      "forge-std/=lib/forge-std/src/",
      "@openzeppelin/=lib/openzeppelin-contracts/",
      "@tokenized-strategy/=lib/tokenized-strategy/src/",
      "@yearn-vaults/=lib/yearn-vaults-v3/contracts/",
      "ds-test/=lib/forge-std/lib/ds-test/src/"
    ],
    "optimizer": {
      "enabled": true,
      "runs": 200
    },
    "metadata": {
      "useLiteralContent": false,
      "bytecodeHash": "ipfs",
      "appendCBOR": true
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    },
    "evmVersion": "paris",
    "viaIR": false
  }
}}

Tags:
ERC20, DeFi, Mintable, Yield, Factory, Oracle|addr:0x2f10af0abc52025160167bffbec7167e5363db90|verified:true|block:23477914|tx:0x64f0f34f4d494a63b42f1cb6774fb29cb8eeff0c6dbe07b690a73d64b0a047ad|first_check:1759315019

Submitted on: 2025-10-01 12:36:59

Comments

Log in to comment.

No comments yet.