Description:
ERC20 token contract with Factory capabilities. Standard implementation for fungible tokens on Ethereum.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"SwapStream/PresaleFactory.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "./Presale.sol";
contract PresaleFactory {
address[] public presales;
event PresaleCreated(address presale, address token);
function createPresale(
address token,
uint256 price,
uint256 start,
uint256 end,
uint256 minBuy,
uint256 maxBuy
) external returns (address) {
Presale presale = new Presale(token, price, start, end, minBuy, maxBuy, msg.sender);
presales.push(address(presale));
emit PresaleCreated(address(presale), token);
return address(presale);
}
function getPresales() external view returns (address[] memory) {
return presales;
}
}
"
},
"SwapStream/Presale.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
contract Presale is ReentrancyGuard {
address public token;
address public owner;
uint256 public price;
uint256 public start;
uint256 public end;
uint256 public minBuy;
uint256 public maxBuy;
uint256 public totalRaised;
mapping(address => uint256) public contributions;
mapping(address => bool) public claimed;
constructor(
address _token,
uint256 _price,
uint256 _start,
uint256 _end,
uint256 _minBuy,
uint256 _maxBuy,
address _owner
) {
require(_start < _end, "Invalid time range");
token = _token;
price = _price;
start = _start;
end = _end;
minBuy = _minBuy;
maxBuy = _maxBuy;
owner = _owner;
}
receive() external payable {
contribute();
}
function contribute() public payable nonReentrant {
require(block.timestamp >= start && block.timestamp <= end, "Presale inactive");
require(msg.value >= minBuy && msg.value + contributions[msg.sender] <= maxBuy, "Invalid amount");
contributions[msg.sender] += msg.value;
totalRaised += msg.value;
}
function claim() public nonReentrant {
require(block.timestamp > end, "Presale not ended");
require(!claimed[msg.sender], "Already claimed");
uint256 userContribution = contributions[msg.sender];
require(userContribution > 0, "Nothing to claim");
uint256 amount = userContribution * 1e18 / price;
claimed[msg.sender] = true;
IERC20(token).transfer(msg.sender, amount);
}
function withdraw() external {
require(msg.sender == owner, "Not owner");
payable(owner).transfer(address(this).balance);
}
function withdrawUnsoldTokens() external {
require(msg.sender == owner, "Not owner");
uint256 unsold = IERC20(token).balanceOf(address(this));
IERC20(token).transfer(owner, unsold);
}
}
"
},
"@openzeppelin/contracts/security/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
"
},
"@openzeppelin/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
}
},
"settings": {
"optimizer": {
"enabled": true,
"runs": 200
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"remappings": []
}
}}
Submitted on: 2025-10-01 13:09:45
Comments
Log in to comment.
No comments yet.