Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/v2/OffchainFractions.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {CounterfactualHolderFactory} from "./CounterfactualHolderFactory.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {Call} from "./Structs.sol";
/**
* @title OffchainFractions
* @notice A contract for creating and managing fractional token sales with optional minimum raise requirements
* @dev Supports both direct transfers and counterfactual holder addresses for recipients
* @dev Counterfactual tokens are held in the CFH Chain for address(this) which always forwards leftover tokens
* - This makes it safe to run multiple sales concurrently accruing to the CFH of address(this)
* - without worrying about leftover tokens
*/
contract OffchainFractions is ReentrancyGuard {
using SafeERC20 for IERC20;
// === Fraction Management Errors ===
error AlreadyExists();
error AlreadyClosed();
error Expired();
error MinSharesCannotBeGreaterThanTotalSteps();
error NotFractionsCloser();
// === Purchase/Sale Errors ===
error InsufficientSharesAvailable();
error NoStepsPurchased();
error StepMustBeGreaterThanZero();
error ZeroSteps();
error MinStepsToBuyCannotBeZero();
error MinStepsToBuyCannotBeGreaterThanStepsToBuy();
// === Validation Errors ===
error InvalidToken();
error InvalidToAddress();
error RecipientCannotBeSelf();
error CannotHaveZeroTotalSteps();
error TaxTokenNotSupported();
error ExpirationMustBeInTheFuture();
error UseCounterfactualAddressForRefundNotAllowedIfAddressIsZero();
// === Refund/Claim Errors ===
error CannotClaimRefundWhenThresholdReached();
error CannotClaimRefundWhenNotExpired();
error CannotCloseWhenThresholdReached();
error ExpirationCannotBeGreaterThanMaxDuration();
error TotalRaisedOverflow();
error RefundOperatorNotApproved();
error CannotSetRefundDetailsWhenThresholdReached();
/**
* @notice Data structure representing a fractional token sale
* @param token The ERC20 token being sold
* @param expiration Timestamp when the sale expires
* @param manuallyClosed Whether the sale was manually closed by the owner
* @param minSharesToRaise Minimum number of steps that must be sold for the sale to be valid
* @param useCounterfactualAddress Whether to use a counterfactual holder address for the recipient
* @param claimedFromMinSharesToRaise Whether funds have been claimed after reaching minimum shares
* @param owner The creator/owner of this fraction sale
* @param step Price per step (in wei of the token)
* @param to The recipient address for the raised funds
* @param soldSteps Number of steps already sold
* @param totalSteps Total number of steps available for sale
* @param closer The address that manually closed the sale
*/
struct FractionData {
address token;
uint48 expiration;
bool manuallyClosed;
uint256 minSharesToRaise;
bool useCounterfactualAddress;
bool claimedFromMinSharesToRaise;
uint256 step;
address to;
uint256 soldSteps;
uint256 totalSteps;
address closer;
}
/**
* @notice Internal struct to hold purchase calculation results (avoids stack too deep)
* @param stepsToBuy Final number of steps to purchase (adjusted for availability)
* @param amount Total cost for the purchase
* @param newFractionsSold Total steps that will be sold after this purchase
* @param sendTo Address where funds should be sent
* @param roundFullyFilled Whether this purchase completes the round
*/
struct PurchaseDetails {
uint256 stepsToBuy;
uint256 amount;
uint256 newFractionsSold;
address sendTo;
bool roundFullyFilled;
}
struct RefundDetails {
address refundTo;
bool useCounterfactualAddress;
}
/// @notice Tracks the number of steps purchased by each user for each fraction sale
mapping(address user => mapping(address creator => mapping(bytes32 id => uint256 stepsPurchased))) public
stepsPurchased;
mapping(address user => mapping(address refundOperator => bool isApproved)) public refundApprovals;
mapping(address user => mapping(address creator => mapping(bytes32 id => RefundDetails))) private _refundDetails;
/// @notice Stores fraction sale data indexed by creator and fraction ID
mapping(address user => mapping(bytes32 id => FractionData)) private _fractions;
address public constant REFUND_WILDCARD_OPERATOR = 0xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF;
uint256 private constant MAX_DURATION = 100 weeks;
/// @notice Factory contract for creating counterfactual holder addresses
CounterfactualHolderFactory public immutable i_CFHFactory;
/// @notice Emitted when a new fraction sale is created
event FractionCreated(
bytes32 indexed id,
address indexed token,
address indexed owner,
uint256 step,
uint256 totalSteps,
uint48 expiration,
address to,
bool useCounterfactualAddress,
uint256 minSharesToRaise,
address closer
);
/// @notice Emitted when steps are purchased in a fraction sale
event FractionSold(
bytes32 indexed id,
address indexed creator,
address indexed creditTo,
address buyer,
uint256 step,
uint256 amount
);
/// @notice Emitted when a fraction sale round is completely filled
event RoundFilled(bytes32 indexed id, address indexed creator);
/// @notice Emitted when a fraction sale is manually closed by the owner
event FractionClosed(bytes32 indexed id, address indexed token, address indexed owner);
/// @notice Emitted when a user claims a refund from an unfilled sale
event FractionRefunded(
bytes32 indexed id, address indexed creator, address indexed user, address refundTo, uint256 amount
);
/// @notice Emitted when the minimum shares threshold is reached and funds are released
event MinSharesReached(bytes32 indexed id, address indexed creator, uint256 minShares, uint256 newTotalSharesSold);
event RefundOperatorStatusSet(address indexed user, address indexed refundOperator, bool isApproved);
constructor(CounterfactualHolderFactory _counterfactualHolderFactory) {
i_CFHFactory = _counterfactualHolderFactory;
}
/**
* @notice Creates a new fractional token sale
* @param id Unique identifier for this fraction sale
* @param token The ERC20 token to be sold
* @param step Price per step (in wei of the token)
* @param totalSteps Total number of steps available for sale
* @param expiration Timestamp when the sale expires
* @param to Recipient address for the raised funds
* @param useCounterfactualAddress Whether to use a counterfactual holder for the recipient
* @param minSharesToRaise Minimum steps required for the sale to be valid (0 = no minimum)
* @param closer The address that is allowed to manually close the sale
*/
function createFraction(
bytes32 id,
address token,
uint256 step,
uint256 totalSteps,
uint48 expiration,
address to,
bool useCounterfactualAddress,
uint256 minSharesToRaise,
address closer
) external nonReentrant {
// Validate input parameters
_validateFractionCreationParams(token, to, step, totalSteps, minSharesToRaise, expiration);
// Ensure fraction doesn't already exist
if (_fractions[msg.sender][id].totalSteps != 0) {
revert AlreadyExists();
}
// Create the fraction data
_fractions[msg.sender][id] = FractionData({
token: token,
step: step,
soldSteps: 0,
totalSteps: totalSteps,
expiration: expiration,
manuallyClosed: false,
useCounterfactualAddress: useCounterfactualAddress,
to: to,
minSharesToRaise: minSharesToRaise,
claimedFromMinSharesToRaise: minSharesToRaise == 0,
closer: closer
});
emit FractionCreated(
id, token, msg.sender, step, totalSteps, expiration, to, useCounterfactualAddress, minSharesToRaise, closer
);
}
/**
* @notice Purchase steps in a fractional token sale
* @param creator The address that created the fraction sale
* @param id The unique identifier of the fraction sale
* @param stepsToBuy Maximum number of steps to purchase
* @param minStepsToBuy Minimum number of steps that must be available to purchase
*/
function buyFractions(
address creator,
bytes32 id,
uint256 stepsToBuy,
uint256 minStepsToBuy,
address refundTo,
address creditTo,
bool useCounterfactualAddressForRefund
) external nonReentrant {
FractionData storage fraction = _fractions[creator][id];
if (minStepsToBuy == 0) {
revert MinStepsToBuyCannotBeZero();
}
if (stepsToBuy == 0) {
revert ZeroSteps();
}
if (minStepsToBuy > stepsToBuy) {
revert MinStepsToBuyCannotBeGreaterThanStepsToBuy();
}
if (refundTo != address(0) && useCounterfactualAddressForRefund) {
revert UseCounterfactualAddressForRefundNotAllowedIfAddressIsZero();
}
// Validate the purchase can proceed
_validatePurchaseConditions(fraction);
// Calculate purchase details with stack isolation
PurchaseDetails memory details = _calculatePurchaseDetails(fraction, stepsToBuy, minStepsToBuy);
// Handle the token transfers based on minimum shares logic
bool minSharesReached =
_handlePurchaseTransfers(fraction, details, creator, id, fraction.useCounterfactualAddress);
if (refundTo != address(0) && !minSharesReached) {
_refundDetails[msg.sender][creator][id] =
RefundDetails({refundTo: refundTo, useCounterfactualAddress: useCounterfactualAddressForRefund});
}
// Update state and emit events
_finalizePurchase(fraction, details, creator, creditTo, id);
}
/**
* @notice Allows participants to claim a refund if the round didn't reach minimum shares
* @dev Can only claim refund if:
* - Round didn't reach minSharesToRaise threshold
* - Round is expired OR manually closed
* @param creator The address that created the fraction sale
* @param id The unique identifier of the fraction sale
*/
function claimRefund(address user, address creator, bytes32 id) external nonReentrant {
FractionData storage fraction = _fractions[creator][id];
RefundDetails memory refundDetails = _refundDetails[user][creator][id];
address refundToInStruct = refundDetails.refundTo;
address refundTo = refundToInStruct == address(0) ? user : refundToInStruct;
// Either the user or the refund to address must have approved the refund operator
if (!isRefundOperatorApproved(user, msg.sender) && !isRefundOperatorApproved(refundToInStruct, msg.sender)) {
revert RefundOperatorNotApproved();
}
if (refundDetails.useCounterfactualAddress) {
refundTo = i_CFHFactory.getCurrentCFH({user: refundTo, token: fraction.token});
}
uint256 _stepsPurchased = stepsPurchased[user][creator][id];
if (_stepsPurchased == 0) {
revert NoStepsPurchased();
}
// Check if round reached minimum threshold
uint256 soldSteps = fraction.soldSteps;
bool roundFilled = soldSteps >= fraction.minSharesToRaise;
if (roundFilled) {
revert CannotClaimRefundWhenThresholdReached();
}
// Check if refund conditions are met (expired OR manually closed)
bool expired = block.timestamp > fraction.expiration;
bool manuallyClosed = fraction.manuallyClosed;
// equivalent to require(manually closed || expired)
if (!manuallyClosed && !expired) {
revert CannotClaimRefundWhenNotExpired();
}
// Calculate refund amount and update state
uint256 amount = _stepsPurchased * fraction.step;
stepsPurchased[user][creator][id] = 0;
fraction.soldSteps = soldSteps - _stepsPurchased;
// Transfer refund to user
if (fraction.useCounterfactualAddress) {
Call[] memory calls = new Call[](1);
calls[0] = Call({
target: address(fraction.token),
data: abi.encodeWithSelector(IERC20.transfer.selector, refundTo, amount)
});
i_CFHFactory.execute(fraction.token, calls);
} else {
IERC20(fraction.token).safeTransfer(refundTo, amount);
}
emit FractionRefunded(id, creator, user, refundTo, amount);
}
/**
* @notice Manually close a fraction sale before expiration
* @dev Only the closer can close their own fraction sale
* @dev Can only close if the round hasn't reached minimum shares threshold
* @param creator The address that created the fraction sale
* @param id The unique identifier of the fraction sale to close
*/
function closeFraction(address creator, bytes32 id) external nonReentrant {
FractionData storage fraction = _fractions[creator][id];
if (msg.sender != fraction.closer) {
revert NotFractionsCloser();
}
// Validate closure conditions
if (fraction.manuallyClosed) {
revert AlreadyClosed();
}
if (fraction.soldSteps >= fraction.minSharesToRaise) {
revert CannotCloseWhenThresholdReached();
}
if (block.timestamp > fraction.expiration) {
revert Expired();
}
// Mark as manually closed
fraction.manuallyClosed = true;
emit FractionClosed(id, fraction.token, creator);
}
/**
* @notice Sets the refund details for a specific fraction sale
* @dev This function allows a user to specify the refund address and whether to use a counterfactual address
* @param creator The address of the creator of the fraction sale
* @param id The unique identifier of the fraction sale
* @param refundTo The address to which refunds should be sent
* @param useCounterfactualAddress A boolean indicating whether to use a counterfactual address for the refund
* @dev Reverts if `refundTo` is not zero and `useCounterfactualAddress` is true
*/
function setRefundDetails(address creator, bytes32 id, address refundTo, bool useCounterfactualAddress) external {
if (refundTo != address(0) && useCounterfactualAddress) {
revert UseCounterfactualAddressForRefundNotAllowedIfAddressIsZero();
}
FractionData storage fraction = _fractions[creator][id];
if (fraction.soldSteps >= fraction.minSharesToRaise) {
revert CannotSetRefundDetailsWhenThresholdReached();
}
_refundDetails[msg.sender][creator][id] =
RefundDetails({refundTo: refundTo, useCounterfactualAddress: useCounterfactualAddress});
}
/**
* @notice Sets the approval status of a refund operator for the caller
* @dev This function allows the caller to approve or revoke approval for a refund operator
* @param refundOperator The address of the refund operator to set the status for
* @param isApproved A boolean indicating whether the refund operator is approved (true) or not (false)
*/
function setRefundOperatorStatus(address refundOperator, bool isApproved) external {
refundApprovals[msg.sender][refundOperator] = isApproved;
emit RefundOperatorStatusSet(msg.sender, refundOperator, isApproved);
}
/**
* @notice Get the fraction sale data for a specific creator and ID
* @param creator The address that created the fraction sale
* @param id The unique identifier of the fraction sale
* @return The complete fraction sale data
*/
function getFraction(address creator, bytes32 id) external view returns (FractionData memory) {
return _fractions[creator][id];
}
function getRefundDetails(address user, address creator, bytes32 id) external view returns (RefundDetails memory) {
return _refundDetails[user][creator][id];
}
/**
* @notice Checks if a refund operator is approved for a specific user
* @dev The function first checks if the caller is the user, in which case it returns true.
* It then checks if the wildcard operator is approved for the user.
* @param user The address of the user for whom the refund operator approval is being checked
* @param refundOperator The address of the refund operator to check approval status for
* @return A boolean indicating whether the refund operator is approved for the user
*/
function isRefundOperatorApproved(address user, address refundOperator) public view returns (bool) {
if (msg.sender == user) return true;
bool isWildcardOperatorApproved = refundApprovals[user][REFUND_WILDCARD_OPERATOR];
if (isWildcardOperatorApproved) return true;
return refundApprovals[user][refundOperator];
}
// ============ INTERNAL FUNCTIONS ============
/**
* @notice Validates parameters for fraction creation
* @param token The ERC20 token address
* @param to The recipient address
* @param step The price per step
* @param totalSteps The total number of steps
* @param minSharesToRaise The minimum number of steps to raise
*/
function _validateFractionCreationParams(
address token,
address to,
uint256 step,
uint256 totalSteps,
uint256 minSharesToRaise,
uint48 expiration
) internal view {
if (token == address(0)) revert InvalidToken();
if (to == address(0)) revert InvalidToAddress();
if (step == 0) revert StepMustBeGreaterThanZero();
if (totalSteps == 0) revert CannotHaveZeroTotalSteps();
if (to == address(this)) revert RecipientCannotBeSelf();
if (minSharesToRaise > totalSteps) revert MinSharesCannotBeGreaterThanTotalSteps();
if (expiration <= block.timestamp) revert ExpirationMustBeInTheFuture();
if (expiration - block.timestamp > MAX_DURATION) revert ExpirationCannotBeGreaterThanMaxDuration();
if (willMultiplyOverflow(step, totalSteps)) revert TotalRaisedOverflow();
}
/**
* @notice Validates that a purchase can proceed
* @param fraction The fraction data to validate
*/
function _validatePurchaseConditions(FractionData storage fraction) internal view {
if (fraction.manuallyClosed) revert AlreadyClosed();
if (block.timestamp > fraction.expiration) revert Expired();
}
/**
* @notice Calculates purchase details including adjusted steps and recipient address
* @param fraction The fraction data
* @param stepsToBuy Requested number of steps to buy
* @param minStepsToBuy Minimum steps required to be available
* @return details Calculated purchase details
*/
function _calculatePurchaseDetails(FractionData storage fraction, uint256 stepsToBuy, uint256 minStepsToBuy)
internal
view
returns (PurchaseDetails memory details)
{
{
address toInStruct = fraction.to;
details.sendTo = fraction.useCounterfactualAddress
? i_CFHFactory.getCurrentCFH({user: toInStruct, token: fraction.token})
: toInStruct;
}
{
uint256 soldSteps = fraction.soldSteps;
uint256 totalSteps = fraction.totalSteps;
uint256 stepsLeft = totalSteps - soldSteps;
if (stepsLeft < minStepsToBuy) revert InsufficientSharesAvailable();
details.stepsToBuy = min(stepsLeft, stepsToBuy);
}
details.newFractionsSold = fraction.soldSteps + details.stepsToBuy;
details.amount = details.stepsToBuy * fraction.step;
details.roundFullyFilled = details.newFractionsSold == fraction.totalSteps;
}
/**
* @notice Handles token transfers based on minimum shares logic
* @dev With Counterfactual Holder (CFH) enabled, all fundraised amounts before `minSharesToRaise` is reached
* are held in the OffchainFractions CFH address rather than the contract balance. This ensures that any
* on-chain monitoring reflects the actual behavior of funds being held in the CFH address.
* @dev When `minSharesToRaise` is reached, the funds are transferred to the recipient.
* @param fraction The fraction data
* @param details Purchase calculation results
* @param creator The fraction creator
* @param id The fraction ID
*/
function _handlePurchaseTransfers(
FractionData storage fraction,
PurchaseDetails memory details,
address creator,
bytes32 id,
bool isGuardedToken
) internal returns (bool minSharesReached) {
address token = fraction.token;
uint256 minSharesToRaise = fraction.minSharesToRaise;
minSharesReached = details.newFractionsSold >= minSharesToRaise;
/// If `minShares` has not been reached, send funds to the contract.
if (details.newFractionsSold < minSharesToRaise) {
// Below minimum threshold - hold funds in contract
_safeTransferFromNoTaxToken(token, msg.sender, address(this), details.amount, isGuardedToken);
}
// If `minShares` has been reached
// If it's the first time reaching `minShares`, transfer all accumulated funds to the recipient. and mark it as claimed.
// If it's not the first time reaching `minShares`, transfer the funds to the recipient.
else {
// Above minimum threshold - handle fund distribution
if (fraction.claimedFromMinSharesToRaise) {
// Minimum already claimed, send directly to recipient
IERC20(token).safeTransferFrom(msg.sender, details.sendTo, details.amount);
} else {
// First time reaching minimum - transfer all accumulated funds
_safeTransferFromNoTaxToken(token, msg.sender, address(this), details.amount, isGuardedToken);
uint256 totalAmount = details.newFractionsSold * fraction.step;
if (isGuardedToken) {
Call[] memory calls = new Call[](1);
calls[0] = Call({
target: address(token),
data: abi.encodeWithSelector(IERC20.transfer.selector, details.sendTo, totalAmount)
});
i_CFHFactory.execute(token, calls);
} else {
IERC20(token).safeTransfer(details.sendTo, totalAmount);
}
fraction.claimedFromMinSharesToRaise = true;
// For `0` min shares, this won't be emitted.
emit MinSharesReached(id, creator, minSharesToRaise, details.newFractionsSold);
}
}
}
/**
* @notice Finalizes the purchase by updating state and emitting events
* @param fraction The fraction data
* @param details Purchase calculation results
* @param creator The fraction creator
* @param id The fraction ID
*/
function _finalizePurchase(
FractionData storage fraction,
PurchaseDetails memory details,
address creator,
address creditTo,
bytes32 id
) internal {
// Update user's purchase record
stepsPurchased[msg.sender][creator][id] += details.stepsToBuy;
// Update fraction's sold steps
fraction.soldSteps = details.newFractionsSold;
// Emit events
if (details.roundFullyFilled) {
emit RoundFilled(id, creator);
}
emit FractionSold(id, creator, creditTo, msg.sender, fraction.step, details.amount);
}
/**
* @notice Safe transfer that ensures no tax tokens are used
* @dev Reverts if the received amount doesn't match the sent amount (indicating a tax token)
* @param token The ERC20 token to transfer
* @param from The address to transfer from
* @param to The address to transfer to
* @param amount The amount to transfer
*/
function _safeTransferFromNoTaxToken(address token, address from, address to, uint256 amount, bool isGuardedToken)
internal
{
address sendTo = isGuardedToken ? i_CFHFactory.getCurrentCFH({user: to, token: token}) : to;
uint256 balBefore = IERC20(token).balanceOf(sendTo);
IERC20(token).safeTransferFrom(from, sendTo, amount);
uint256 balAfter = IERC20(token).balanceOf(sendTo);
if (balAfter - balBefore != amount) {
revert TaxTokenNotSupported();
}
}
/**
* @notice Returns the minimum of two values
* @param a First value
* @param b Second value
* @return The smaller of the two values
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/// @notice Checks if a * b would overflow
/// @param a The first operand
/// @param b The second operand
/// @return bool True if multiplication would overflow, false otherwise
function willMultiplyOverflow(uint256 a, uint256 b) internal pure returns (bool) {
// Gas-optimized shortcut: zero can't overflow
if (a == 0 || b == 0) return false;
// Overflow occurs if a > type(uint256).max / b
return a > type(uint256).max / b;
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
if (nonceAfter != nonceBefore + 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"src/v2/CounterfactualHolderFactory.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {CounterfactualHolder} from "./CounterfactualHolder.sol";
import {Call} from "./Structs.sol";
import {TransientBytes} from "./utils/TransientBytes/TransientBytes.sol";
import {ICounterfactualHolderFactory} from "./ICounterfactualHolderFactory.sol";
import {TransientSlot} from "./utils/TransientBytes/TransientSlot.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
contract CounterfactualHolderFactory is ICounterfactualHolderFactory, ReentrancyGuard {
using SafeERC20 for IERC20;
using TransientBytes for *;
using TransientSlot for *;
error NotApproved(address from, address operator);
event TransferToCFH(
address indexed from, address indexed toUser, address indexed token, address cfh, uint256 amount
);
event Execute(address indexed user, address indexed cfh, address indexed token, Call[] calls);
event Approval(address indexed from, address indexed operator, bool status);
struct UserTokenData {
uint256 nextSalt;
}
mapping(address user => mapping(address token => UserTokenData)) public userTokenData;
mapping(address owner => mapping(address operator => bool status)) public approvals;
function transferCFHToCFH(address toUser, address token, uint256 amount) external nonReentrant {
_executeCFHTransfer(msg.sender, toUser, token, amount);
}
function transferFromCFHToCFH(address fromUser, address toUser, address token, uint256 amount)
external
nonReentrant
{
if (!isApproved(fromUser, msg.sender)) {
revert NotApproved(fromUser, msg.sender);
}
_executeCFHTransfer(fromUser, toUser, token, amount);
}
function _executeCFHTransfer(address fromUser, address toUser, address token, uint256 amount) internal {
UserTokenData storage d = userTokenData[toUser][token];
address currentHolder = _predictCFH(token, deriveUserNonce(toUser, token, d.nextSalt));
Call[] memory calls = new Call[](1);
calls[0] = Call({
target: address(token),
data: abi.encodeWithSelector(IERC20.transfer.selector, currentHolder, amount)
});
_execute(fromUser, token, calls);
emit TransferToCFH(fromUser, toUser, token, currentHolder, amount);
}
function transferToCFH(address user, address token, uint256 amount) external nonReentrant {
UserTokenData storage d = userTokenData[user][token];
address currentHolder = _predictCFH(token, deriveUserNonce(user, token, d.nextSalt));
IERC20(token).safeTransferFrom(msg.sender, currentHolder, amount);
emit TransferToCFH(msg.sender, user, token, currentHolder, amount);
}
function executeFrom(address from, address token, Call[] memory calls) external nonReentrant {
if (!isApproved(from, msg.sender)) {
revert NotApproved(from, msg.sender);
}
_execute(from, token, calls);
}
function execute(address token, Call[] memory calls) external nonReentrant {
_execute(msg.sender, token, calls);
}
function setApprovalStatus(address operator, bool status) external {
approvals[msg.sender][operator] = status;
emit Approval(msg.sender, operator, status);
}
function _execute(address from, address token, Call[] memory calls) internal {
bytes32 baseCallsSlot = deriveCallsBaseSlot();
bytes memory dataCalls = abi.encode(calls);
baseCallsSlot.tstoreBytes(dataCalls);
UserTokenData storage d = userTokenData[from][token];
uint256 nextSalt = d.nextSalt;
address nextHolder = _predictCFH(token, deriveUserNonce(from, token, nextSalt + 1));
bytes32 baseNextHolderSlot = deriveNextHolderBaseSlot();
baseNextHolderSlot.asAddress().tstore(nextHolder);
bytes32 nonce = deriveUserNonce(from, token, nextSalt);
address cfh = address(new CounterfactualHolder{salt: nonce}(IERC20(token)));
d.nextSalt = nextSalt + 1;
emit Execute(from, cfh, token, calls);
}
function isApproved(address from, address operator) public view returns (bool) {
return approvals[from][operator];
}
function getCurrentCFH(address user, address token) public view returns (address) {
UserTokenData storage d = userTokenData[user][token];
return _predictCFH(token, deriveUserNonce(user, token, d.nextSalt));
}
function balanceOfCFH(address user, address token) external view returns (uint256) {
return IERC20(token).balanceOf(getCurrentCFH(user, token));
}
function deriveUserNonce(address user, address token, uint256 nonce) internal view returns (bytes32) {
return keccak256(abi.encodePacked(user, token, nonce, address(this)));
}
function getTransientCalls() external view returns (Call[] memory) {
bytes32 baseCallsSlot = deriveCallsBaseSlot();
bytes memory dataCalls = baseCallsSlot.tloadBytes();
return abi.decode(dataCalls, (Call[]));
}
function getTransientNextHolder() external view returns (address) {
bytes32 baseNextHolderSlot = deriveNextHolderBaseSlot();
return baseNextHolderSlot.asAddress().tload();
}
function deriveCallsBaseSlot() internal pure returns (bytes32) {
return keccak256(abi.encodePacked("CALLS"));
}
function deriveNextHolderBaseSlot() internal pure returns (bytes32) {
return keccak256(abi.encodePacked("NEXT_HOLDER"));
}
/// @dev Predict the create2
function _predictCFH(address token, bytes32 salt) internal view returns (address currentHolder) {
bytes32 initCodeHash = keccak256(abi.encodePacked(type(CounterfactualHolder).creationCode, abi.encode(token)));
// EIP-1014: keccak256(0xff ++ deployer ++ salt ++ keccak256(init_code))[12:]
bytes32 hash = keccak256(abi.encodePacked(bytes1(0xff), address(this), salt, initCodeHash));
currentHolder = address(uint160(uint256(hash)));
}
}
"
},
"lib/openzeppelin-contracts/contracts/security/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
if (_status == _ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
"
},
"src/v2/Structs.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
struct Call {
address target;
bytes data;
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
"
},
"lib/openzeppelin-contracts/contracts/utils/Address.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
"
},
"src/v2/CounterfactualHolder.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
import {Call} from "./Structs.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {ICounterfactualHolderFactory} from "./ICounterfactualHolderFactory.sol";
contract CounterfactualHolder {
using SafeERC20 for IERC20;
error ExecutionFailed(uint256 index, address target, bytes data);
constructor(IERC20 _token) {
ICounterfactualHolderFactory factory = ICounterfactualHolderFactory(msg.sender);
Call[] memory _calls = factory.getTransientCalls();
_executeCalls(_calls);
uint256 leftoverBalance = _token.balanceOf(address(this));
if (leftoverBalance > 0) {
address nextHolder = factory.getTransientNextHolder();
_token.safeTransfer(nextHolder, leftoverBalance);
}
}
function _executeCalls(Call[] memory _calls) internal {
uint256 length = _calls.length;
for (uint256 i; i < length; ++i) {
(bool success,) = _calls[i].target.call(_calls[i].data);
if (!success) {
revert ExecutionFailed(i, _calls[i].target, _calls[i].data);
}
}
}
}
"
},
"src/v2/utils/TransientBytes/TransientBytes.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
/**
* TransientBytes (incremental slots)
* - Length at `baseSlot`
* - Data starts at keccak256(abi.encodePacked(baseSlot, DOMAIN))
* - Chunk i lives at dataStart + i
*
* Uses OpenZeppelin TransientSlot for typed tload/tstore.
*/
import "./TransientSlot.sol";
library TransientBytes {
using TransientSlot for *;
// Domain-separate the data region to avoid accidental overlap
bytes32 private constant _DOMAIN = keccak256("TransientBytes.v2");
/*//////////////////////////////////////////////////////////////
WRITE
//////////////////////////////////////////////////////////////*/
function tstoreBytes(bytes32 baseSlot, bytes memory data) internal {
uint256 len = data.length;
baseSlot.asUint256().tstore(len);
if (len == 0) return;
uint256 nChunks = (len + 31) / 32; // ceil_div
bytes32 dataStart = _dataStart(baseSlot);
uint256 src;
assembly {
src := add(data, 32)
}
for (uint256 i = 0; i < nChunks; ++i) {
bytes32 word;
assembly {
word := mload(add(src, mul(i, 32)))
}
_slotAdd(dataStart, i).asBytes32().tstore(word);
}
}
/*//////////////////////////////////////////////////////////////
READ
//////////////////////////////////////////////////////////////*/
function tloadBytes(bytes32 baseSlot) internal view returns (bytes memory out) {
uint256 len = baseSlot.asUint256().tload();
if (len == 0) return bytes("");
out = new bytes(len);
uint256 nChunks = (len + 31) / 32;
bytes32 dataStart = _dataStart(baseSlot);
uint256 dst;
assembly {
dst := add(out, 32)
}
for (uint256 i = 0; i < nChunks; ++i) {
bytes32 word = _slotAdd(dataStart, i).asBytes32().tload();
assembly {
mstore(add(dst, mul(i, 32)), word)
}
}
}
/*//////////////////////////////////////////////////////////////
CLEAR
//////////////////////////////////////////////////////////////*/
/// @dev Logically clear by zeroing length (no need to zero chunks).
function tclear(bytes32 baseSlot) internal {
baseSlot.asUint256().tstore(0);
}
/*//////////////////////////////////////////////////////////////
INTERNALS
//////////////////////////////////////////////////////////////*/
/// @dev Start of data region = keccak256(baseSlot || DOMAIN)
function _dataStart(bytes32 baseSlot) private pure returns (bytes32 start) {
bytes32 d = _DOMAIN;
assembly {
let ptr := mload(0x40)
mstore(ptr, baseSlot)
mstore(add(ptr, 0x20), d)
start := keccak256(ptr, 64)
}
}
/// @dev Return base + index as a bytes32 slot.
function _slotAdd(bytes32 base, uint256 index) private pure returns (bytes32 slot) {
assembly {
slot := add(base, index)
}
}
}
"
},
"src/v2/ICounterfactualHolderFactory.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
import {Call} from "./Structs.sol";
interface ICounterfactualHolderFactory {
function getTransientCalls() external view returns (Call[] memory);
function getTransientNextHolder() external view returns (address);
}
"
},
"src/v2/utils/TransientBytes/TransientSlot.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/TransientSlot.sol)
// This file was procedurally generated from scripts/generate/templates/TransientSlot.js.
pragma solidity ^0.8.24;
/**
* @dev Library for reading and writing value-types to specific transient storage slots.
*
* Transient slots are often used to store temporary values that are removed after the current transaction.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* * Example reading and writing values using transient storage:
* ```solidity
* contract Lock {
* using TransientSlot for *;
*
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _LOCK_SLOT = 0xf4678858b2b588224636b8522b729e7722d32fc491da849ed75b3fdf3c84f542;
*
* modifier locked() {
* require(!_LOCK_SLOT.asBoolean().tload());
*
* _LOCK_SLOT.asBoolean().tstore(true);
* _;
* _LOCK_SLOT.asBoolean().tstore(false);
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library TransientSlot {
/**
* @dev UDVT that represents a slot holding an address.
*/
type AddressSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a AddressSlot.
*/
function asAddress(bytes32 slot) internal pure returns (AddressSlot) {
return AddressSlot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a bool.
*/
type BooleanSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a BooleanSlot.
*/
function asBoolean(bytes32 slot) internal pure returns (BooleanSlot) {
return BooleanSlot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a bytes32.
*/
type Bytes32Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Bytes32Slot.
*/
function asBytes32(bytes32 slot) internal pure returns (Bytes32Slot) {
return Bytes32Slot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a uint256.
*/
type Uint256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Uint256Slot.
*/
function asUint256(bytes32 slot) internal pure returns (Uint256Slot) {
return Uint256Slot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a int256.
*/
type Int256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Int256Slot.
*/
function asInt256(bytes32 slot) internal pure returns (Int256Slot) {
return Int256Slot.wrap(slot);
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(AddressSlot slot) internal view returns (address value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(AddressSlot slot, address value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(BooleanSlot slot) internal view returns (bool value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(BooleanSlot slot, bool value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Bytes32Slot slot) internal view returns (bytes32 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Bytes32Slot slot, bytes32 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Uint256Slot slot) internal view returns (uint256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Uint256Slot slot, uint256 value) internal {
Submitted on: 2025-10-01 17:17:43
Comments
Log in to comment.
No comments yet.