MorphoSupplier

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "@morpho-blue/interfaces/IMorpho.sol": {
      "content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

type Id is bytes32;

struct MarketParams {
    address loanToken;
    address collateralToken;
    address oracle;
    address irm;
    uint256 lltv;
}

/// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
/// accrual.
struct Position {
    uint256 supplyShares;
    uint128 borrowShares;
    uint128 collateral;
}

/// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalSupplyShares` does not contain the additional shares accrued by `feeRecipient` since the last
/// interest accrual.
struct Market {
    uint128 totalSupplyAssets;
    uint128 totalSupplyShares;
    uint128 totalBorrowAssets;
    uint128 totalBorrowShares;
    uint128 lastUpdate;
    uint128 fee;
}

struct Authorization {
    address authorizer;
    address authorized;
    bool isAuthorized;
    uint256 nonce;
    uint256 deadline;
}

struct Signature {
    uint8 v;
    bytes32 r;
    bytes32 s;
}

/// @dev This interface is used for factorizing IMorphoStaticTyping and IMorpho.
/// @dev Consider using the IMorpho interface instead of this one.
interface IMorphoBase {
    /// @notice The EIP-712 domain separator.
    /// @dev Warning: Every EIP-712 signed message based on this domain separator can be reused on chains sharing the
    /// same chain id and on forks because the domain separator would be the same.
    function DOMAIN_SEPARATOR() external view returns (bytes32);

    /// @notice The owner of the contract.
    /// @dev It has the power to change the owner.
    /// @dev It has the power to set fees on markets and set the fee recipient.
    /// @dev It has the power to enable but not disable IRMs and LLTVs.
    function owner() external view returns (address);

    /// @notice The fee recipient of all markets.
    /// @dev The recipient receives the fees of a given market through a supply position on that market.
    function feeRecipient() external view returns (address);

    /// @notice Whether the `irm` is enabled.
    function isIrmEnabled(address irm) external view returns (bool);

    /// @notice Whether the `lltv` is enabled.
    function isLltvEnabled(uint256 lltv) external view returns (bool);

    /// @notice Whether `authorized` is authorized to modify `authorizer`'s position on all markets.
    /// @dev Anyone is authorized to modify their own positions, regardless of this variable.
    function isAuthorized(address authorizer, address authorized) external view returns (bool);

    /// @notice The `authorizer`'s current nonce. Used to prevent replay attacks with EIP-712 signatures.
    function nonce(address authorizer) external view returns (uint256);

    /// @notice Sets `newOwner` as `owner` of the contract.
    /// @dev Warning: No two-step transfer ownership.
    /// @dev Warning: The owner can be set to the zero address.
    function setOwner(address newOwner) external;

    /// @notice Enables `irm` as a possible IRM for market creation.
    /// @dev Warning: It is not possible to disable an IRM.
    function enableIrm(address irm) external;

    /// @notice Enables `lltv` as a possible LLTV for market creation.
    /// @dev Warning: It is not possible to disable a LLTV.
    function enableLltv(uint256 lltv) external;

    /// @notice Sets the `newFee` for the given market `marketParams`.
    /// @param newFee The new fee, scaled by WAD.
    /// @dev Warning: The recipient can be the zero address.
    function setFee(MarketParams memory marketParams, uint256 newFee) external;

    /// @notice Sets `newFeeRecipient` as `feeRecipient` of the fee.
    /// @dev Warning: If the fee recipient is set to the zero address, fees will accrue there and will be lost.
    /// @dev Modifying the fee recipient will allow the new recipient to claim any pending fees not yet accrued. To
    /// ensure that the current recipient receives all due fees, accrue interest manually prior to making any changes.
    function setFeeRecipient(address newFeeRecipient) external;

    /// @notice Creates the market `marketParams`.
    /// @dev Here is the list of assumptions on the market's dependencies (tokens, IRM and oracle) that guarantees
    /// Morpho behaves as expected:
    /// - The token should be ERC-20 compliant, except that it can omit return values on `transfer` and `transferFrom`.
    /// - The token balance of Morpho should only decrease on `transfer` and `transferFrom`. In particular, tokens with
    /// burn functions are not supported.
    /// - The token should not re-enter Morpho on `transfer` nor `transferFrom`.
    /// - The token balance of the sender (resp. receiver) should decrease (resp. increase) by exactly the given amount
    /// on `transfer` and `transferFrom`. In particular, tokens with fees on transfer are not supported.
    /// - The IRM should not re-enter Morpho.
    /// - The oracle should return a price with the correct scaling.
    /// @dev Here is a list of assumptions on the market's dependencies which, if broken, could break Morpho's liveness
    /// properties (funds could get stuck):
    /// - The token should not revert on `transfer` and `transferFrom` if balances and approvals are right.
    /// - The amount of assets supplied and borrowed should not go above ~1e35 (otherwise the computation of
    /// `toSharesUp` and `toSharesDown` can overflow).
    /// - The IRM should not revert on `borrowRate`.
    /// - The IRM should not return a very high borrow rate (otherwise the computation of `interest` in
    /// `_accrueInterest` can overflow).
    /// - The oracle should not revert `price`.
    /// - The oracle should not return a very high price (otherwise the computation of `maxBorrow` in `_isHealthy` or of
    /// `assetsRepaid` in `liquidate` can overflow).
    /// @dev The borrow share price of a market with less than 1e4 assets borrowed can be decreased by manipulations, to
    /// the point where `totalBorrowShares` is very large and borrowing overflows.
    function createMarket(MarketParams memory marketParams) external;

    /// @notice Supplies `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
    /// `onMorphoSupply` function with the given `data`.
    /// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
    /// caller is guaranteed to have `assets` tokens pulled from their balance, but the possibility to mint a specific
    /// amount of shares is given for full compatibility and precision.
    /// @dev Supplying a large amount can revert for overflow.
    /// @dev Supplying an amount of shares may lead to supply more or fewer assets than expected due to slippage.
    /// Consider using the `assets` parameter to avoid this.
    /// @param marketParams The market to supply assets to.
    /// @param assets The amount of assets to supply.
    /// @param shares The amount of shares to mint.
    /// @param onBehalf The address that will own the increased supply position.
    /// @param data Arbitrary data to pass to the `onMorphoSupply` callback. Pass empty data if not needed.
    /// @return assetsSupplied The amount of assets supplied.
    /// @return sharesSupplied The amount of shares minted.
    function supply(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        bytes memory data
    ) external returns (uint256 assetsSupplied, uint256 sharesSupplied);

    /// @notice Withdraws `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
    /// @dev Either `assets` or `shares` should be zero. To withdraw max, pass the `shares`'s balance of `onBehalf`.
    /// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
    /// @dev Withdrawing an amount corresponding to more shares than supplied will revert for underflow.
    /// @dev It is advised to use the `shares` input when withdrawing the full position to avoid reverts due to
    /// conversion roundings between shares and assets.
    /// @param marketParams The market to withdraw assets from.
    /// @param assets The amount of assets to withdraw.
    /// @param shares The amount of shares to burn.
    /// @param onBehalf The address of the owner of the supply position.
    /// @param receiver The address that will receive the withdrawn assets.
    /// @return assetsWithdrawn The amount of assets withdrawn.
    /// @return sharesWithdrawn The amount of shares burned.
    function withdraw(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        address receiver
    ) external returns (uint256 assetsWithdrawn, uint256 sharesWithdrawn);

    /// @notice Borrows `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
    /// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
    /// caller is guaranteed to borrow `assets` of tokens, but the possibility to mint a specific amount of shares is
    /// given for full compatibility and precision.
    /// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
    /// @dev Borrowing a large amount can revert for overflow.
    /// @dev Borrowing an amount of shares may lead to borrow fewer assets than expected due to slippage.
    /// Consider using the `assets` parameter to avoid this.
    /// @param marketParams The market to borrow assets from.
    /// @param assets The amount of assets to borrow.
    /// @param shares The amount of shares to mint.
    /// @param onBehalf The address that will own the increased borrow position.
    /// @param receiver The address that will receive the borrowed assets.
    /// @return assetsBorrowed The amount of assets borrowed.
    /// @return sharesBorrowed The amount of shares minted.
    function borrow(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        address receiver
    ) external returns (uint256 assetsBorrowed, uint256 sharesBorrowed);

    /// @notice Repays `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
    /// `onMorphoRepay` function with the given `data`.
    /// @dev Either `assets` or `shares` should be zero. To repay max, pass the `shares`'s balance of `onBehalf`.
    /// @dev Repaying an amount corresponding to more shares than borrowed will revert for underflow.
    /// @dev It is advised to use the `shares` input when repaying the full position to avoid reverts due to conversion
    /// roundings between shares and assets.
    /// @dev An attacker can front-run a repay with a small repay making the transaction revert for underflow.
    /// @param marketParams The market to repay assets to.
    /// @param assets The amount of assets to repay.
    /// @param shares The amount of shares to burn.
    /// @param onBehalf The address of the owner of the debt position.
    /// @param data Arbitrary data to pass to the `onMorphoRepay` callback. Pass empty data if not needed.
    /// @return assetsRepaid The amount of assets repaid.
    /// @return sharesRepaid The amount of shares burned.
    function repay(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        bytes memory data
    ) external returns (uint256 assetsRepaid, uint256 sharesRepaid);

    /// @notice Supplies `assets` of collateral on behalf of `onBehalf`, optionally calling back the caller's
    /// `onMorphoSupplyCollateral` function with the given `data`.
    /// @dev Interest are not accrued since it's not required and it saves gas.
    /// @dev Supplying a large amount can revert for overflow.
    /// @param marketParams The market to supply collateral to.
    /// @param assets The amount of collateral to supply.
    /// @param onBehalf The address that will own the increased collateral position.
    /// @param data Arbitrary data to pass to the `onMorphoSupplyCollateral` callback. Pass empty data if not needed.
    function supplyCollateral(MarketParams memory marketParams, uint256 assets, address onBehalf, bytes memory data)
        external;

    /// @notice Withdraws `assets` of collateral on behalf of `onBehalf` and sends the assets to `receiver`.
    /// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
    /// @dev Withdrawing an amount corresponding to more collateral than supplied will revert for underflow.
    /// @param marketParams The market to withdraw collateral from.
    /// @param assets The amount of collateral to withdraw.
    /// @param onBehalf The address of the owner of the collateral position.
    /// @param receiver The address that will receive the collateral assets.
    function withdrawCollateral(MarketParams memory marketParams, uint256 assets, address onBehalf, address receiver)
        external;

    /// @notice Liquidates the given `repaidShares` of debt asset or seize the given `seizedAssets` of collateral on the
    /// given market `marketParams` of the given `borrower`'s position, optionally calling back the caller's
    /// `onMorphoLiquidate` function with the given `data`.
    /// @dev Either `seizedAssets` or `repaidShares` should be zero.
    /// @dev Seizing more than the collateral balance will underflow and revert without any error message.
    /// @dev Repaying more than the borrow balance will underflow and revert without any error message.
    /// @dev An attacker can front-run a liquidation with a small repay making the transaction revert for underflow.
    /// @param marketParams The market of the position.
    /// @param borrower The owner of the position.
    /// @param seizedAssets The amount of collateral to seize.
    /// @param repaidShares The amount of shares to repay.
    /// @param data Arbitrary data to pass to the `onMorphoLiquidate` callback. Pass empty data if not needed.
    /// @return The amount of assets seized.
    /// @return The amount of assets repaid.
    function liquidate(
        MarketParams memory marketParams,
        address borrower,
        uint256 seizedAssets,
        uint256 repaidShares,
        bytes memory data
    ) external returns (uint256, uint256);

    /// @notice Executes a flash loan.
    /// @dev Flash loans have access to the whole balance of the contract (the liquidity and deposited collateral of all
    /// markets combined, plus donations).
    /// @dev Warning: Not ERC-3156 compliant but compatibility is easily reached:
    /// - `flashFee` is zero.
    /// - `maxFlashLoan` is the token's balance of this contract.
    /// - The receiver of `assets` is the caller.
    /// @param token The token to flash loan.
    /// @param assets The amount of assets to flash loan.
    /// @param data Arbitrary data to pass to the `onMorphoFlashLoan` callback.
    function flashLoan(address token, uint256 assets, bytes calldata data) external;

    /// @notice Sets the authorization for `authorized` to manage `msg.sender`'s positions.
    /// @param authorized The authorized address.
    /// @param newIsAuthorized The new authorization status.
    function setAuthorization(address authorized, bool newIsAuthorized) external;

    /// @notice Sets the authorization for `authorization.authorized` to manage `authorization.authorizer`'s positions.
    /// @dev Warning: Reverts if the signature has already been submitted.
    /// @dev The signature is malleable, but it has no impact on the security here.
    /// @dev The nonce is passed as argument to be able to revert with a different error message.
    /// @param authorization The `Authorization` struct.
    /// @param signature The signature.
    function setAuthorizationWithSig(Authorization calldata authorization, Signature calldata signature) external;

    /// @notice Accrues interest for the given market `marketParams`.
    function accrueInterest(MarketParams memory marketParams) external;

    /// @notice Returns the data stored on the different `slots`.
    function extSloads(bytes32[] memory slots) external view returns (bytes32[] memory);
}

/// @dev This interface is inherited by Morpho so that function signatures are checked by the compiler.
/// @dev Consider using the IMorpho interface instead of this one.
interface IMorphoStaticTyping is IMorphoBase {
    /// @notice The state of the position of `user` on the market corresponding to `id`.
    /// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
    /// accrual.
    function position(Id id, address user)
        external
        view
        returns (uint256 supplyShares, uint128 borrowShares, uint128 collateral);

    /// @notice The state of the market corresponding to `id`.
    /// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
    /// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
    /// @dev Warning: `totalSupplyShares` does not contain the accrued shares by `feeRecipient` since the last interest
    /// accrual.
    function market(Id id)
        external
        view
        returns (
            uint128 totalSupplyAssets,
            uint128 totalSupplyShares,
            uint128 totalBorrowAssets,
            uint128 totalBorrowShares,
            uint128 lastUpdate,
            uint128 fee
        );

    /// @notice The market params corresponding to `id`.
    /// @dev This mapping is not used in Morpho. It is there to enable reducing the cost associated to calldata on layer
    /// 2s by creating a wrapper contract with functions that take `id` as input instead of `marketParams`.
    function idToMarketParams(Id id)
        external
        view
        returns (address loanToken, address collateralToken, address oracle, address irm, uint256 lltv);
}

/// @title IMorpho
/// @author Morpho Labs
/// @custom:contact security@morpho.org
/// @dev Use this interface for Morpho to have access to all the functions with the appropriate function signatures.
interface IMorpho is IMorphoBase {
    /// @notice The state of the position of `user` on the market corresponding to `id`.
    /// @dev Warning: For `feeRecipient`, `p.supplyShares` does not contain the accrued shares since the last interest
    /// accrual.
    function position(Id id, address user) external view returns (Position memory p);

    /// @notice The state of the market corresponding to `id`.
    /// @dev Warning: `m.totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
    /// @dev Warning: `m.totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
    /// @dev Warning: `m.totalSupplyShares` does not contain the accrued shares by `feeRecipient` since the last
    /// interest accrual.
    function market(Id id) external view returns (Market memory m);

    /// @notice The market params corresponding to `id`.
    /// @dev This mapping is not used in Morpho. It is there to enable reducing the cost associated to calldata on layer
    /// 2s by creating a wrapper contract with functions that take `id` as input instead of `marketParams`.
    function idToMarketParams(Id id) external view returns (MarketParams memory);
}
"
    },
    "@morpho-blue/libraries/MarketParamsLib.sol": {
      "content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {Id, MarketParams} from "../interfaces/IMorpho.sol";

/// @title MarketParamsLib
/// @author Morpho Labs
/// @custom:contact security@morpho.org
/// @notice Library to convert a market to its id.
library MarketParamsLib {
    /// @notice The length of the data used to compute the id of a market.
    /// @dev The length is 5 * 32 because `MarketParams` has 5 variables of 32 bytes each.
    uint256 internal constant MARKET_PARAMS_BYTES_LENGTH = 5 * 32;

    /// @notice Returns the id of the market `marketParams`.
    function id(MarketParams memory marketParams) internal pure returns (Id marketParamsId) {
        assembly ("memory-safe") {
            marketParamsId := keccak256(marketParams, MARKET_PARAMS_BYTES_LENGTH)
        }
    }
}
"
    },
    "@openzeppelin/contracts/interfaces/draft-IERC6093.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
"
    },
    "@openzeppelin/contracts/interfaces/IERC5267.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}
"
    },
    "@openzeppelin/contracts/token/ERC20/ERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}
"
    },
    "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
"
    },
    "@openzeppelin/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
"
    },
    "@openzeppelin/contracts/utils/cryptography/ECDSA.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/cryptography/EIP712.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    // slither-disable-next-line constable-states
    string private _nameFallback;
    // slither-disable-next-line constable-states
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @inheritdoc IERC5267
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}
"
    },
    "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\
32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\
32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\
" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\
", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 

Tags:
ERC20, Multisig, Mintable, Liquidity, Upgradeable, Multi-Signature, Factory, Oracle|addr:0xe06d897a2da79f407ba5f0e9055ff6c55409c78f|verified:true|block:23489466|tx:0xdd410dc8cf6c52d91c3fd0e078ebaacafe1d2b720529dff005c336ffedb310db|first_check:1759404077

Submitted on: 2025-10-02 13:21:18

Comments

Log in to comment.

No comments yet.