UnstakeCooldown

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "contracts/tranches/base/cooldown/UnstakeCooldown.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { Clones } from "@openzeppelin/contracts/proxy/Clones.sol";
import { IUnstakeHandler } from "../../interfaces/cooldown/IUnstakeHandler.sol";
import { IUnstakeCooldown } from "../../interfaces/cooldown/ICooldown.sol";
import { CooldownBase } from "./CooldownBase.sol";

/**
 * @title Strata Unstake Cooldown Manager
 */
contract UnstakeCooldown is IUnstakeCooldown, CooldownBase {

    event UserProxyCreated(address indexed user, address proxy);
    event UserProxyImplementationSet(address token, address impl);

    struct TRequest {
        uint64 unlockAt;
        IUnstakeHandler proxy;
    }

    /// @dev Unstaking implementations for each supported token and protocol
    mapping(address token => IUnstakeHandler unstakeImpl) public implementations;

    /// @dev Active requests
    mapping(address token => mapping(address account => TRequest[] requests)) public activeRequests;

    /// @dev Maintain proxies Pool, after the request is completed, the proxy is returned to the pool
    mapping(address token => mapping(address account => IUnstakeHandler[] proxy)) public proxiesPool;

    /// @notice Transfers assets from msg.sender (Strategy) to the specified user by creating an unstake request in the underlying protocol
    /// @dev After the cooldown period elapses in the underlying protocol,
    /// @dev the requests can be finalized and the funds are unlocked and transferred to the user
    /// @param token The ERC20 token being transferred
    /// @param initialFrom The original sender of the assets, specified by the strategy
    /// @param to The recipient of the unstaked assets
    /// @param amount The amount of tokens to transfer
    /// @custom:access Restricted to COOLDOWN_WORKER_ROLE
    function transfer(IERC20 token, address initialFrom, address to, uint256 amount) external onlyRole(COOLDOWN_WORKER_ROLE) {
        address worker = msg.sender;
        if (amount == 0) {
            return;
        }
        address impl = address(implementations[address(token)]);
        if (impl == address(0)) {
            revert UnsupportedToken(address(token));
        }

        TRequest[] storage requests = activeRequests[address(token)][to];
        IUnstakeHandler[] storage proxies = proxiesPool[address(token)][to];

        IUnstakeHandler proxy;
        bool shouldReuseRequest = false;
        uint256 requestsCount = requests.length;
        if (initialFrom != to && requestsCount >= PUBLIC_REQUEST_SLOTS_CAP) {
            revert ExternalReceiverRequestLimitRiched(token, initialFrom, to, amount);
        }
        if (requestsCount > 0) {
            // Check if we should create a new request or extend the last one
            shouldReuseRequest = requestsCount >= MAX_ACTIVE_REQUEST_SLOTS
                || requests[requestsCount - 1].proxy.requestedAt() == block.timestamp;
        }
        if (shouldReuseRequest) {
            proxy = requests[requestsCount - 1].proxy;
        } else {
            uint256 len = proxies.length;
            if (len > 0) {
                proxy = IUnstakeHandler(proxies[len - 1]);
                proxies.pop();
                if (impl != getImplementation(address(proxy))) {
                    proxy = createFor(impl, to);
                }
            } else {
                proxy = createFor(impl, to);
            }
        }

        SafeERC20.safeTransferFrom(token, worker, address(proxy), amount);

        uint256 unlockAt = proxy.request();
        emit TransferRequested(token, initialFrom, to, amount, unlockAt);

        if (shouldReuseRequest) {
            if (unlockAt > block.timestamp) {
                // If not an instant transfer, update the existing unlockAt
                requests[requestsCount - 1].unlockAt = uint64(unlockAt);
            }
            // exit, do not modify requests and proxies
            return;
        }
        if (unlockAt <= block.timestamp) {
            // already transferred (instant transfer), return proxy to pool and exit
            proxies.push(proxy);
            emit Finalized(token, to, amount);
            return;
        }
        requests.push(TRequest(uint64(unlockAt), proxy));
    }

    /// @notice Finalizes the requests up to the current block timestamp
    /// @custom:see finalize(IERC20 token, address user, uint256 at) for more detailed documentation
    function finalize(IERC20 token, address user) external returns (uint256 claimed) {
        return finalize(token, user, block.timestamp);
    }

    /// @notice Finalizes unstake requests for a user, processing all eligible requests up to the specified timestamp
    /// @param token The ERC20 token being unstaked
    /// @param user The address of the user whose requests are being finalized
    /// @param at The timestamp up to which requests should be processed
    /// @return claimed The total amount of tokens claimed from finalized requests
    function finalize(IERC20 token, address user, uint256 at) public returns (uint256 claimed) {
        if (at > block.timestamp) {
            revert InvalidTime();
        }
        TRequest[] storage requests = activeRequests[address(token)][user];
        IUnstakeHandler[] storage proxies = proxiesPool[address(token)][user];
        IUnstakeHandler imp = implementations[address(token)];

        // Emergency exit: check the underlying protocol if the cooldown is still active
        bool isCooldownActive = imp.isCooldownActive();
        uint256 len = requests.length;
        for (uint256 i; i < len; ) {
            TRequest memory req = requests[i];
            if (req.unlockAt > at && isCooldownActive) {
                // Still pending
                unchecked { i++; }
                continue;
            }

            claimed += req.proxy.finalize();
            // Return proxy to the pool (reuse later)
            proxies.push(req.proxy);

            if (i < len - 1) {
                requests[i] = requests[len - 1];
            }
            requests.pop();
            unchecked { len--; }
        }
        if (claimed == 0) {
            revert NothingToFinalize();
        }

        emit Finalized(token, user, claimed);
        return claimed;
    }

    /// @notice Returns the user's balance state at the current block timestamp
    /// @custom:see balanceOf(IERC20 token, address user, uint256 at) for more detailed documentation
    function balanceOf (IERC20 token, address user) external view returns (TBalanceState memory) {
        return balanceOf(token, user, block.timestamp);
    }

    /// @notice Returns the user's balance state for a given unstakable token at a specific timestamp
    /// @dev Balance includes pending and claimable amounts in underlying tokens
    /// @param token The unstakable token address
    /// @param user The user's address
    /// @param at The timestamp for which to calculate the balance
    /// @return TBalanceState struct containing pending, claimable, and next unlock details in underlying tokens
    function balanceOf (IERC20 token, address user, uint256 at) public view returns (TBalanceState memory) {
        TRequest[] storage requests = activeRequests[address(token)][user];
        IUnstakeHandler imp = implementations[address(token)];
        bool isCooldownActive = imp.isCooldownActive();

        uint256 l = requests.length;

        uint256 pending;
        uint256 claimable;
        uint256 nextUnlockAt;
        uint256 nextUnlockAmount;

        for (uint256 i; i < l; i++) {
            TRequest memory req = requests[i];
            uint256 amount = req.proxy.getPendingAmount();
            if (req.unlockAt > at && isCooldownActive) {
                pending += amount;
                if (nextUnlockAt == 0 || req.unlockAt < nextUnlockAt) {
                    nextUnlockAt = req.unlockAt;
                    nextUnlockAmount = amount;
                    continue;
                }
                if (req.unlockAt == nextUnlockAt) {
                    nextUnlockAmount += amount;
                }
                continue;
            }
            claimable += amount;
        }
        return TBalanceState({
            pending: pending,
            claimable: claimable,
            nextUnlockAt: nextUnlockAt,
            nextUnlockAmount: nextUnlockAmount,
            totalRequests: l
        });
    }

    function createFor(address implementation, address user) internal returns (IUnstakeHandler proxy) {
        proxy = IUnstakeHandler(Clones.clone(implementation, 0));
        proxy.initialize(address(this), user);
        emit UserProxyCreated(user, address(proxy));
        return proxy;
    }

    /**
     * @dev Updates the implementations for tokens. Implementation can be ZERO address in case we want to remove supported token.
     */
    function setImplementations(address[] calldata tokens_, IUnstakeHandler[] calldata implementations_) external onlyOwner {
        uint256 len = tokens_.length;
        for (uint256 i = 0; i < len; ) {
            address token = tokens_[i];
            IUnstakeHandler impl = implementations_[i];
            implementations[token] = impl;
            emit UserProxyImplementationSet(token, address(impl));
            unchecked { i++; }
        }
    }

    function getImplementation(address proxy) internal view returns (address implementation) {
        assembly {
            // Clones.clone := 0x363d3d373d3d3d363d73<20-byte implementation>5af43d82803e903d91602b57fd5bf3
            let ptr := mload(0x40)
            extcodecopy(proxy, ptr, 10, 32)
            implementation := shr(96, mload(ptr)) // right-shift to 20 bytes
        }
    }
}
"
    },
    "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}
"
    },
    "@openzeppelin/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "contracts/tranches/interfaces/cooldown/IUnstakeHandler.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;


interface IUnstakeHandler {
    function initialize (address handler, address user) external;

    function request () external returns (uint256 unlockAt);
    function request (address receiver) external returns (uint256 unlockAt);

    function finalize() external returns (uint256);

    function getPendingAmount () external view returns (uint256 amount);

    function isCooldownActive() external view returns (bool);

    function requestedAt () external view returns (uint256);
}
"
    },
    "@openzeppelin/contracts/interfaces/IERC1363.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
"
    },
    "contracts/tranches/interfaces/cooldown/ICooldown.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface ICooldown {
     struct TBalanceState {
        uint256 pending;
        uint256 claimable;
        uint256 nextUnlockAt;
        uint256 nextUnlockAmount;
        uint256 totalRequests;
    }

    event TransferRequested(IERC20 indexed token, address indexed from, address indexed to, uint256 amount, uint256 unlockAt);
    event Finalized(IERC20 indexed token, address indexed user, uint256 amount);

    error InvalidTime ();
    error UnsupportedToken(address token);
    error NothingToFinalize ();
    error ExternalReceiverRequestLimitRiched(IERC20 token, address from, address to, uint256 amount);

    function finalize(IERC20 token, address user) external returns (uint256 claimed);
    function finalize(IERC20 token, address user, uint256 at) external returns (uint256 claimed);

    function balanceOf (IERC20 token, address user) external view returns (TBalanceState memory);
    function balanceOf (IERC20 token, address user, uint256 at) external view returns (TBalanceState memory);
}


interface IERC20Cooldown is ICooldown {
    function transfer(IERC20 token, address initialFrom, address to, uint256 amount, uint256 cooldownSeconds) external;
    function setCooldownDisabled(IERC20 token, bool isCooldownDisabled) external;
}

interface IUnstakeCooldown is ICooldown {
    function transfer(IERC20 token, address initialFrom, address to, uint256 amount) external;
}
"
    },
    "@openzeppelin/contracts/proxy/Clones.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    error CloneArgumentsTooLong();

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple times will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(value, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create opcode, which should never revert.
     */
    function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
        return cloneWithImmutableArgs(implementation, args, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
     * parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneWithImmutableArgs(
        address implementation,
        bytes memory args,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        assembly ("memory-safe") {
            instance := create(value, add(bytecode, 0x20), mload(bytecode))
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
     * `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice
     * at the same address.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
     * but with a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.deploy(value, salt, bytecode);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.computeAddress(salt, keccak256(bytecode), deployer);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
    }

    /**
     * @dev Get the immutable args attached to a clone.
     *
     * - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
     *   function will return an empty array.
     * - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
     *   `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
     *   creation.
     * - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
     *   function should only be used to check addresses that are known to be clones.
     */
    function fetchCloneArgs(address instance) internal view returns (bytes memory) {
        bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short
        assembly ("memory-safe") {
            extcodecopy(instance, add(result, 32), 45, mload(result))
        }
        return result;
    }

    /**
     * @dev Helper that prepares the initcode of the proxy with immutable args.
     *
     * An assembly variant of this function requires copying the `args` array, which can be efficiently done using
     * `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
     * abi.encodePacked is more expensive but also more portable and easier to review.
     *
     * NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
     * With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
     */
    function _cloneCodeWithImmutableArgs(
        address implementation,
        bytes memory args
    ) private pure returns (bytes memory) {
        if (args.length > 24531) revert CloneArgumentsTooLong();
        return
            abi.encodePacked(
                hex"61",
                uint16(args.length + 45),
                hex"3d81600a3d39f3363d3d373d3d3d363d73",
                implementation,
                hex"5af43d82803e903d91602b57fd5bf3",
                args
            );
    }
}
"
    },
    "@openzeppelin/contracts/interfaces/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
"
    },
    "@openzeppelin/contracts/interfaces/IERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";
"
    },
    "contracts/tranches/base/cooldown/CooldownBase.sol": {
      "content": "// SPDX-License-Identifier: MIT\r
pragma solidity ^0.8.28;\r
\r
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";\r
import { ICooldown } from "../../interfaces/cooldown/ICooldown.sol";\r
import { AccessControlled } from "../../../governance/AccessControlled.sol";\r
\r
\r
abstract contract CooldownBase is ICooldown, AccessControlled {\r
    /// @dev Users can create multiple requests with separate finalization dates.\r
    /// @dev To prevent spamming, new requests are merged with the last one if the limit is reached.\r
    uint256 constant internal MAX_ACTIVE_REQUEST_SLOTS  = 70;\r
    /// @dev Maximum amount of active cooldown transfers where from != to\r
    uint256 constant internal PUBLIC_REQUEST_SLOTS_CAP  = 40;\r
\r
    function initialize(\r
        address owner_,\r
        address acm_\r
    ) public virtual initializer {\r
        AccessControlled_init(owner_, acm_);\r
    }\r
}\r
"
    },
    "@openzeppelin/contracts/utils/Errors.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}
"
    },
    "@openzeppelin/contracts/utils/introspection/IERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/Create2.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        assembly ("memory-safe") {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
            // if no address was created, and returndata is not empty, bubble revert
            if and(iszero(addr), not(iszero(returndatasize()))) {
                let p := mload(0x40)
                returndatacopy(p, 0, returndatasize())
                revert(p, returndatasize())
            }
        }
        if (addr == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        assembly ("memory-safe") {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }
}
"
    },
    "contracts/governance/AccessControlled.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Ownable2StepUpgradeable } from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import { IAccessControlManager } from "./interfaces/IAccessControlManager.sol";

/**
 * @title Strata Access Control Contract.
 * @dev The AccessControlled contract is a wrapper around the OpenZeppelin AccessControl contract
 *      It provides a standardized way to control access to methods within the Strata Smart Contract Ecosystem.
 *      The contract allows the owner to set an AccessControlManager contract address.
 */

abstract contract AccessControlled is Initializable, Ownable2StepUpgradeable, ReentrancyGuardUpgradeable {

    bytes32 public constant PAUSER_ROLE                 = keccak256("PAUSER_ROLE");
    bytes32 public constant UPDATER_CDO_APR_ROLE        = keccak256("UPDATER_CDO_APR_ROLE");
    bytes32 public constant UPDATER_FEED_ROLE           = keccak256("UPDATER_FEED_ROLE");
    bytes32 public constant UPDATER_STRAT_CONFIG_ROLE   = keccak256("UPDATER_STRAT_CONFIG_ROLE");
    bytes32 public constant RESERVE_MANAGER_ROLE        = keccak256("RESERVE_MANAGER_ROLE");
    bytes32 public constant COOLDOWN_WORKER_ROLE        = keccak256("COOLDOWN_WORKER_ROLE");

    /// @notice Access control manager contract
    IAccessControlManager public acm;

    uint256[49] private __gap;

    /// @notice Emitted when access control manager contract address is changed
    event NewAccessControlManager(address accessControlManager);

    /// @notice Thrown when the action is prohibited by AccessControlManager
    error Unauthorized(address sender, address calledContract, bytes4 sel);
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
    error ZeroAddress();

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    modifier onlyRole(bytes32 role) {
        _checkRole(role, _msgSender());
        _;
    }


    function AccessControlled_init(address owner, address accessControlManager) internal onlyInitializing {
        __Ownable_init_unchained(owner);
        __AccessControlled_init_unchained(accessControlManager);
        __ReentrancyGuard_init();
    }

    function __AccessControlled_init_unchained(address accessControlManager) internal onlyInitializing {
        setAccessControlManagerInner(accessControlManager);
    }

    /**
     * @notice Sets the address of AccessControlManager
     * @dev Admin function to set address of AccessControlManager
     * @param accessControlManager_ The new address of the AccessControlManager
     * @custom:event Emits NewAccessControlManager event
     * @custom:access Only Governance
     */
    function setAccessControlManager(address accessControlManager_) external onlyOwner {
        setAccessControlManagerInner(accessControlManager_);
    }


    /**
     * @dev Internal function to set address of AccessControlManager
     * @param accessControlManager The new address of the AccessControlManager
     */
    function setAccessControlManagerInner(address accessControlManager) internal {
        if (accessControlManager == address(0)) {
            revert ZeroAddress();
        }
        acm = IAccessControlManager(accessControlManager);
        emit NewAccessControlManager(accessControlManager);
    }

    /**
     * @notice Reverts if the call is not allowed by AccessControlManager
     * @param sel Method signature
     */
    function _checkAccessAllowed(bytes4 sel) internal view {
        bool isAllowedToCall = acm.isAllowedToCall(msg.sender, sel);

        if (!isAllowedToCall) {
            revert Unauthorized(msg.sender, address(this), sel);
        }
    }

    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!acm.hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }
}
"
    },
    "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reinitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
     *
     * NOTE: Consider following the ERC-7201 formula to derive storage locations.
     */
    function _initializableStorageSlot() internal pure virtual returns (bytes32) {
        return INITIALIZABLE_STORAGE;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        bytes32 slot = _initializableStorageSlot();
        assembly {
            $.slot := slot
        }
    }
}
"
    },
    "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {OwnableUpgradeable} from "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {O

Tags:
ERC20, ERC165, Multisig, Voting, Upgradeable, Multi-Signature, Factory|addr:0xa3b5c190586fe73e196f660c35fb7de1231a7473|verified:true|block:23491721|tx:0xf62e95db534fe42818b3100ab1db16395fc37a0b26d4266c26c996304fcebe40|first_check:1759427661

Submitted on: 2025-10-02 19:54:22

Comments

Log in to comment.

No comments yet.