StrataCDO

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "contracts/tranches/StrataCDO.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

/**
 ____  _             _          ____ ____   ___
/ ___|| |_ _ __ __ _| |_ __ _  / ___|  _ \ / _ \
\___ \| __| '__/ _` | __/ _` || |   | | | | | | |
 ___) | |_| | | (_| | || (_| || |___| |_| | |_| |
|____/ \__|_|  \__,_|\__\__,_| \____|____/ \___/
*/

import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { AccessControlled } from "../governance/AccessControlled.sol";
import { IErrors } from "./interfaces/IErrors.sol";
import { ITranche } from "./interfaces/ITranche.sol";
import { IStrategy } from "./interfaces/IStrategy.sol";
import { IStrataCDO } from "./interfaces/IStrataCDO.sol";
import { TActionState } from "./structs/TActionState.sol";
import { IAccounting } from "./interfaces/IAccounting.sol";

/// @notice Core CDO contract that orchestrates Tranches, Accounting, and Strategy
/// @dev Manages deposits, withdrawals, and asset distribution between tranches
contract StrataCDO is IErrors, IStrataCDO, AccessControlled {

    /// @dev Accounting contract for managing asset flows and TVL redistribution
    /// @notice This contract handles the calculation of asset distribution between tranches based on target APRs
    /// @dev It's responsible for updating tranche balances, calculating risk-adjusted returns, and maintaining the reserve
    IAccounting public accounting;

    /// @dev The underlying investment strategy contract for this CDO
    /// @notice This contract implements the specific investment logic, e.g., USDe staking
    /// @dev Responsible for handling deposits, withdrawals, and calculating total assets
    /// @dev Interacts directly with external protocol to generate returns
    IStrategy public strategy;

    /// @notice Junior (BB) Tranche
    ITranche public jrtVault;

    /// @notice Senior (AA) Tranche
    ITranche public srtVault;

    /// @dev Address of the treasury wallet
    /// @dev Used as the recipient when reducing reserves
    /// @dev Can be updated by the RESERVE_MANAGER_ROLE
    address public treasury;

    /// @dev Controls the ability to deposit into or withdraw from the junior tranche
    TActionState public actionsJrt;

    /// @dev Controls the ability to deposit into or withdraw from the senior tranche
    TActionState public actionsSrt;

    /// @dev Configurable minimum JRT price per share, below which the protocol automatically pauses deposits
    uint256 public jrtShortfallPausePrice;

    event DepositsStateChanged(address indexed tranche, bool enabled);
    event WithdrawalsStateChanged(address indexed tranche, bool enabled);
    event ReserveReduced(address token, uint256 amount);
    event TreasurySet(address treasury);
    event ShortfallPaused();
    event JrtShortfallPausePriceSet(uint256 pricePerShare);


    /// @notice Restricts function access to only the junior (JRT) or senior (SRT) tranche contracts
    modifier onlyTranche() {
        if (msg.sender != address(jrtVault) && msg.sender != address(srtVault)) {
            revert InvalidCaller(msg.sender);
        }
        _;
    }

    function initialize(
        address owner_,
        address acm_
    ) public virtual initializer {
        AccessControlled_init(owner_, acm_);
        jrtShortfallPausePrice = 0.01e18;
    }

    /// @notice Calculates the total assets for a specific tranche
    /// @dev Retrieves the overall TVL from the strategy and determines the asset split
    /// @param tranche The address of the tranche (junior or senior) to return assets for
    /// @return The total assets allocated to the specified tranche
    /// @dev This function:
    ///      1. Gets the total TVL from the strategy
    ///      2. Uses the accounting contract to calculate the asset split
    ///      3. Returns the assets allocated to the specified tranche
    function totalAssets(address tranche) public view returns (uint256) {
        uint256 totalAssetsOverall = strategy.totalAssets();
        (uint256 jrtAssets, uint256 srtAssets, ) = accounting.totalAssets(
            totalAssetsOverall
        );
        if (isJrt(tranche)) {
            return jrtAssets;
        }
        return srtAssets;
    }

    /// @notice Returns the current total assets held in the strategy
    /// @dev This method retrieves the fresh amount of assets directly from the strategy contract
    /// @return uint256 The current total assets in the strategy
    function totalStrategyAssets() public view returns (uint256) {
        return strategy.totalAssets();
    }

    function pricePerShare(address tranche) public view returns (uint256) {
        uint256 assets = totalAssets(tranche);
        uint256 supply = ITranche(tranche).totalSupply();
        return calculatePricePerShare(assets, supply);
    }

    function maxDeposit(address tranche) external view returns (uint256) {
        bool isJrt_ = isJrt(tranche);
        bool isDepositEnabled = isJrt_ ? actionsJrt.isDepositEnabled : actionsSrt.isDepositEnabled;
        if (isDepositEnabled == false) {
            return 0;
        }
        return accounting.maxDeposit(isJrt_);
    }
    function maxWithdraw(address tranche) external view returns (uint256) {
        bool isJrt_ = isJrt(tranche);
        bool isWithdrawEnabled = isJrt_ ? actionsJrt.isWithdrawEnabled : actionsSrt.isWithdrawEnabled;
        if (isWithdrawEnabled == false) {
            return 0;
        }
        return accounting.maxWithdraw(isJrt_);
    }

    function updateAccounting () external onlyTranche {
        uint256 totalAssetsOverall = strategy.totalAssets();
        accounting.updateAccounting(totalAssetsOverall);
    }

    function deposit(address tranche, address token, uint256 tokenAmount, uint256 baseAssets) external onlyTranche nonReentrant {
        bool isJrt_ = isJrt(tranche);
        bool enabled = isJrt_ ? actionsJrt.isDepositEnabled : actionsSrt.isDepositEnabled;
        if (!enabled) {
            revert DepositsDisabled(tranche);
        }
        if (baseAssets > accounting.maxDeposit(isJrt_)) {
            revert DepositCapReached(tranche);
        }
        if (tokenAmount == 0 || baseAssets == 0) {
            revert ZeroAmount();
        }
        strategy.deposit(tranche, token, tokenAmount, baseAssets, /* owner: */ tranche);
        uint256 jrtAssetsIn = isJrt_ ? baseAssets : 0;
        uint256 srtAssetsIn = isJrt_ ? 0          : baseAssets;
        accounting.updateBalanceFlow(jrtAssetsIn, 0, srtAssetsIn, 0);
        shortfallPauser();
    }

    function withdraw(address tranche, address token, uint256 tokenAmount, uint256 baseAssets, address sender, address receiver) external onlyTranche nonReentrant {
        bool isJrt_ = isJrt(tranche);
        bool enabled = isJrt_ ? actionsJrt.isWithdrawEnabled : actionsSrt.isWithdrawEnabled;
        if (!enabled) {
            revert WithdrawalsDisabled(tranche);
        }
        if (baseAssets > accounting.maxWithdraw(isJrt_)) {
            revert WithdrawalCapReached(tranche);
        }
        if (tokenAmount == 0 || baseAssets == 0) {
            revert ZeroAmount();
        }
        strategy.withdraw(tranche, token, tokenAmount, baseAssets, sender, receiver);
        uint256 jrtAssetsOut = isJrt_ ? baseAssets : 0;
        uint256 srtAssetsOut = isJrt_ ? 0          : baseAssets;
        accounting.updateBalanceFlow(0, jrtAssetsOut, 0, srtAssetsOut);
        shortfallPauser();
    }

    /// @notice Determines if the given address is the Junior (BB) Tranche
    /// @dev Used to differentiate between Junior and Senior Tranches
    /// @param tranche The address to check
    /// @return bool True if the address is the Junior Tranche, false if it's the Senior Tranche
    /// @dev Reverts with InvalidTranche error if the address is neither Junior nor Senior Tranche
    function isJrt (address tranche) public view returns (bool) {
        if (tranche == address(jrtVault)) {
            return true;
        }
        if (tranche == address(srtVault)) {
            return false;
        }
        revert InvalidTranche(tranche);
    }

    /// @notice Configures the CDO with its components
    /// @dev Can only be called once by the owner after components deployment
    function configure (
        IAccounting accounting_,
        IStrategy strategy_,
        ITranche jrtVault_,
        ITranche srtVault_
    ) external onlyOwner {
        if (address(accounting) != address(0)) {
            revert AlreadyConfigured();
        }
        require(address(this) == accounting_.getCDOAddress(), "A1");
        require(address(this) ==   strategy_.getCDOAddress(), "A2");
        require(address(this) ==   jrtVault_.getCDOAddress(), "A3");
        require(address(this) ==   srtVault_.getCDOAddress(), "A4");

        accounting = accounting_;
        strategy = strategy_;
        jrtVault = jrtVault_;
        srtVault = srtVault_;

        jrtVault_.configure();
        srtVault_.configure();
    }

    /// @notice Reduces the reserve and transfers tokens to the treasury
    /// @dev Only callable by RESERVE_MANAGER_ROLE
    function reduceReserve (address token, uint256 tokenAmount) external onlyRole(RESERVE_MANAGER_ROLE) {
        if (treasury == address(0)) {
            revert ZeroAddress();
        }
        // Reverts if the token is not supported
        uint256 baseAssets = strategy.convertToAssets(token, tokenAmount, Math.Rounding.Floor);
        // Reverts if not enough reserve
        accounting.reduceReserve(baseAssets);
        // Transfers tokens out instantly if possible, or through the cooldown process
        strategy.reduceReserve(token, tokenAmount, treasury);
        emit ReserveReduced(token, tokenAmount);
    }

    /// @notice Sets the address of the reserve treasury
    function setReserveTreasury (address treasury_) external onlyRole(RESERVE_MANAGER_ROLE) {
        treasury = treasury_;
        emit TreasurySet(treasury_);
    }

    /// @notice Sets action states for the tranche; zero address affects both tranches
    function setActionStates (address tranche, bool isDepositEnabled, bool isWithdrawEnabled) external onlyRole(PAUSER_ROLE) {
        if (address(tranche) == address(0)) {
            setActionStatesInner(address(jrtVault), isDepositEnabled, isWithdrawEnabled);
            setActionStatesInner(address(srtVault), isDepositEnabled, isWithdrawEnabled);
            return;
        }
        setActionStatesInner(tranche, isDepositEnabled, isWithdrawEnabled);
    }

    /// @notice Internal function to set deposit and withdrawal states for a tranche
    function setActionStatesInner (address tranche, bool isDepositEnabled, bool isWithdrawEnabled) internal {
        TActionState storage state = isJrt(tranche)? actionsJrt : actionsSrt;
        if (state.isDepositEnabled != isDepositEnabled) {
            state.isDepositEnabled = isDepositEnabled;
            emit DepositsStateChanged(tranche, isDepositEnabled);
        }
        if (state.isWithdrawEnabled != isWithdrawEnabled) {
            state.isWithdrawEnabled = isWithdrawEnabled;
            emit WithdrawalsStateChanged(tranche, isWithdrawEnabled);
        }
    }

    /// @notice Sets the JRT shortfall price to automatically pause the deposits, when the price falls below this price
    function setJrtShortfallPausePrice (uint256 jrtShortfallPausePrice_) external onlyRole(PAUSER_ROLE) {
        // If the shortfall pause price is above current price, deposits must be paused manually by the Pauser
        require(jrtShortfallPausePrice_ <= pricePerShare(address(jrtVault)), "ShortfallPriceTooLarge");
        jrtShortfallPausePrice = jrtShortfallPausePrice_;
        emit JrtShortfallPausePriceSet(jrtShortfallPausePrice_);
    }

    function shortfallPauser () internal {
        (uint256 jrtNav,,) = accounting.totalAssetsT0();
        uint256 jrtPrice = calculatePricePerShare(jrtNav, jrtVault.totalSupply());
        if (jrtPrice <= jrtShortfallPausePrice) {
            actionsJrt.isDepositEnabled = false;
            actionsSrt.isDepositEnabled = false;
            emit DepositsStateChanged(address(jrtVault), false);
            emit DepositsStateChanged(address(srtVault), false);
            emit ShortfallPaused();
        }
    }

    function calculatePricePerShare (uint256 assets, uint256 supply) internal pure returns (uint256) {
        return supply == 0
            ? 1e18
            : Math.mulDiv(assets, 1e18, supply, Math.Rounding.Floor);
    }
}
"
    },
    "contracts/governance/AccessControlled.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Ownable2StepUpgradeable } from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import { IAccessControlManager } from "./interfaces/IAccessControlManager.sol";

/**
 * @title Strata Access Control Contract.
 * @dev The AccessControlled contract is a wrapper around the OpenZeppelin AccessControl contract
 *      It provides a standardized way to control access to methods within the Strata Smart Contract Ecosystem.
 *      The contract allows the owner to set an AccessControlManager contract address.
 */

abstract contract AccessControlled is Initializable, Ownable2StepUpgradeable, ReentrancyGuardUpgradeable {

    bytes32 public constant PAUSER_ROLE                 = keccak256("PAUSER_ROLE");
    bytes32 public constant UPDATER_CDO_APR_ROLE        = keccak256("UPDATER_CDO_APR_ROLE");
    bytes32 public constant UPDATER_FEED_ROLE           = keccak256("UPDATER_FEED_ROLE");
    bytes32 public constant UPDATER_STRAT_CONFIG_ROLE   = keccak256("UPDATER_STRAT_CONFIG_ROLE");
    bytes32 public constant RESERVE_MANAGER_ROLE        = keccak256("RESERVE_MANAGER_ROLE");
    bytes32 public constant COOLDOWN_WORKER_ROLE        = keccak256("COOLDOWN_WORKER_ROLE");

    /// @notice Access control manager contract
    IAccessControlManager public acm;

    uint256[49] private __gap;

    /// @notice Emitted when access control manager contract address is changed
    event NewAccessControlManager(address accessControlManager);

    /// @notice Thrown when the action is prohibited by AccessControlManager
    error Unauthorized(address sender, address calledContract, bytes4 sel);
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
    error ZeroAddress();

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    modifier onlyRole(bytes32 role) {
        _checkRole(role, _msgSender());
        _;
    }


    function AccessControlled_init(address owner, address accessControlManager) internal onlyInitializing {
        __Ownable_init_unchained(owner);
        __AccessControlled_init_unchained(accessControlManager);
        __ReentrancyGuard_init();
    }

    function __AccessControlled_init_unchained(address accessControlManager) internal onlyInitializing {
        setAccessControlManagerInner(accessControlManager);
    }

    /**
     * @notice Sets the address of AccessControlManager
     * @dev Admin function to set address of AccessControlManager
     * @param accessControlManager_ The new address of the AccessControlManager
     * @custom:event Emits NewAccessControlManager event
     * @custom:access Only Governance
     */
    function setAccessControlManager(address accessControlManager_) external onlyOwner {
        setAccessControlManagerInner(accessControlManager_);
    }


    /**
     * @dev Internal function to set address of AccessControlManager
     * @param accessControlManager The new address of the AccessControlManager
     */
    function setAccessControlManagerInner(address accessControlManager) internal {
        if (accessControlManager == address(0)) {
            revert ZeroAddress();
        }
        acm = IAccessControlManager(accessControlManager);
        emit NewAccessControlManager(accessControlManager);
    }

    /**
     * @notice Reverts if the call is not allowed by AccessControlManager
     * @param sel Method signature
     */
    function _checkAccessAllowed(bytes4 sel) internal view {
        bool isAllowedToCall = acm.isAllowedToCall(msg.sender, sel);

        if (!isAllowedToCall) {
            revert Unauthorized(msg.sender, address(this), sel);
        }
    }

    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!acm.hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }
}
"
    },
    "contracts/tranches/interfaces/IErrors.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;


interface IErrors {

    error InvalidTranche(address tranche);
    error InvalidCaller(address caller);

    error UnsupportedToken(address token);

    error AlreadyConfigured();

    error MinSharesViolation();

    error WithdrawalsDisabled(address tranche);
    error DepositsDisabled(address tranche);

    error DepositCapReached(address tranche);
    error WithdrawalCapReached(address tranche);

    error InvalidConfigCooldown();

    error ZeroAmount();
}
"
    },
    "contracts/tranches/interfaces/ITranche.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import { ICDOComponent } from "./ICDOComponent.sol";
import { IMetaVault } from "./IMetaVault.sol";

interface ITranche is ICDOComponent, IMetaVault {

    function configure () external;
}
"
    },
    "@openzeppelin/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "contracts/tranches/interfaces/ICDOComponent.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

interface ICDOComponent {
    function getCDOAddress() external view returns (address);
}
"
    },
    "contracts/tranches/interfaces/IStrategy.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { ICDOComponent } from "./ICDOComponent.sol";

interface IStrategy is ICDOComponent {

    function deposit (address tranche, address token, uint256 tokenAmount, uint256 baseAssets, address owner) external returns (uint256);
    function withdraw (address tranche, address token, uint256 tokenAmount, uint256 bseAssets, address sender, address receiver) external returns (uint256);
    function totalAssets () external view returns (uint256);
    function reduceReserve (address token, uint256 tokenAmount, address receiver) external;

    function convertToAssets (address token, uint256 tokenAmount, Math.Rounding rounding) external view returns (uint256 baseAssets);
    function convertToTokens (address token, uint256 baseAssets, Math.Rounding rounding) external view returns (uint256 tokenAmount);

    function getSupportedTokens () external view returns (IERC20[] memory);
}
"
    },
    "contracts/tranches/interfaces/IMetaVault.sol": {
      "content": "// SPDX-License-Identifier: MIT\r
pragma solidity ^0.8.28;\r
\r
import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";\r
\r
interface IMetaVault is IERC4626 {\r
\r
    function deposit(address token, uint256 tokenAssets, address receiver) external returns (uint256);\r
    function mint(address token, uint256 shares, address receiver) external returns (uint256);\r
    function withdraw(address token, uint256 tokenAssets, address receiver, address owner) external returns (uint256);\r
    function redeem(address token, uint256 shares, address receiver, address owner) external returns (uint256);\r
\r
}\r
"
    },
    "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {OwnableUpgradeable} from "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {Ownable} contract includes a two-step mechanism to transfer
 * ownership, where the new owner must call {acceptOwnership} in order to replace the
 * old one. This can help prevent common mistakes, such as transfers of ownership to
 * incorrect accounts, or to contracts that are unable to interact with the
 * permission system.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable2Step
    struct Ownable2StepStorage {
        address _pendingOwner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable2Step")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant Ownable2StepStorageLocation = 0x237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00;

    function _getOwnable2StepStorage() private pure returns (Ownable2StepStorage storage $) {
        assembly {
            $.slot := Ownable2StepStorageLocation
        }
    }

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    function __Ownable2Step_init() internal onlyInitializing {
    }

    function __Ownable2Step_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        return $._pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     *
     * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        $._pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        delete $._pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}
"
    },
    "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    /// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
    struct ReentrancyGuardStorage {
        uint256 _status;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
        assembly {
            $.slot := ReentrancyGuardStorageLocation
        }
    }

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if ($._status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        $._status = ENTERED;
    }

    function _nonReentrantAfter() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        return $._status == ENTERED;
    }
}
"
    },
    "contracts/governance/interfaces/IAccessControlManager.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import { IAccessControl } from "@openzeppelin/contracts/access/IAccessControl.sol";

interface IAccessControlManager is IAccessControl {
    function grantCall(address contractAddress, bytes4 sel, address accountToPermit) external;

    function revokeCall(
        address contractAddress,
        bytes4 sel,
        address accountToRevoke
    ) external;

    function isAllowedToCall(address account, bytes4 sel) external view returns (bool);

    function hasPermission(
        address account,
        address contractAddress,
        bytes4 sel
    ) external view returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/Panic.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}
"
    },
    "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This me

Tags:
ERC20, Multisig, Mintable, Staking, Yield, Upgradeable, Multi-Signature, Factory|addr:0xecff8b0c1f122392bd6324fd9cf0b0fd19730b94|verified:true|block:23491713|tx:0x29f342fa289b24d30997832dfe2eeff49ea06206b92099e7690fd7b117bcab01|first_check:1759431164

Submitted on: 2025-10-02 20:52:45

Comments

Log in to comment.

No comments yet.