Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/tranches/StrataCDO.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
/**
____ _ _ ____ ____ ___
/ ___|| |_ _ __ __ _| |_ __ _ / ___| _ \ / _ \
\___ \| __| '__/ _` | __/ _` || | | | | | | | |
___) | |_| | | (_| | || (_| || |___| |_| | |_| |
|____/ \__|_| \__,_|\__\__,_| \____|____/ \___/
*/
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { AccessControlled } from "../governance/AccessControlled.sol";
import { IErrors } from "./interfaces/IErrors.sol";
import { ITranche } from "./interfaces/ITranche.sol";
import { IStrategy } from "./interfaces/IStrategy.sol";
import { IStrataCDO } from "./interfaces/IStrataCDO.sol";
import { TActionState } from "./structs/TActionState.sol";
import { IAccounting } from "./interfaces/IAccounting.sol";
/// @notice Core CDO contract that orchestrates Tranches, Accounting, and Strategy
/// @dev Manages deposits, withdrawals, and asset distribution between tranches
contract StrataCDO is IErrors, IStrataCDO, AccessControlled {
/// @dev Accounting contract for managing asset flows and TVL redistribution
/// @notice This contract handles the calculation of asset distribution between tranches based on target APRs
/// @dev It's responsible for updating tranche balances, calculating risk-adjusted returns, and maintaining the reserve
IAccounting public accounting;
/// @dev The underlying investment strategy contract for this CDO
/// @notice This contract implements the specific investment logic, e.g., USDe staking
/// @dev Responsible for handling deposits, withdrawals, and calculating total assets
/// @dev Interacts directly with external protocol to generate returns
IStrategy public strategy;
/// @notice Junior (BB) Tranche
ITranche public jrtVault;
/// @notice Senior (AA) Tranche
ITranche public srtVault;
/// @dev Address of the treasury wallet
/// @dev Used as the recipient when reducing reserves
/// @dev Can be updated by the RESERVE_MANAGER_ROLE
address public treasury;
/// @dev Controls the ability to deposit into or withdraw from the junior tranche
TActionState public actionsJrt;
/// @dev Controls the ability to deposit into or withdraw from the senior tranche
TActionState public actionsSrt;
/// @dev Configurable minimum JRT price per share, below which the protocol automatically pauses deposits
uint256 public jrtShortfallPausePrice;
event DepositsStateChanged(address indexed tranche, bool enabled);
event WithdrawalsStateChanged(address indexed tranche, bool enabled);
event ReserveReduced(address token, uint256 amount);
event TreasurySet(address treasury);
event ShortfallPaused();
event JrtShortfallPausePriceSet(uint256 pricePerShare);
/// @notice Restricts function access to only the junior (JRT) or senior (SRT) tranche contracts
modifier onlyTranche() {
if (msg.sender != address(jrtVault) && msg.sender != address(srtVault)) {
revert InvalidCaller(msg.sender);
}
_;
}
function initialize(
address owner_,
address acm_
) public virtual initializer {
AccessControlled_init(owner_, acm_);
jrtShortfallPausePrice = 0.01e18;
}
/// @notice Calculates the total assets for a specific tranche
/// @dev Retrieves the overall TVL from the strategy and determines the asset split
/// @param tranche The address of the tranche (junior or senior) to return assets for
/// @return The total assets allocated to the specified tranche
/// @dev This function:
/// 1. Gets the total TVL from the strategy
/// 2. Uses the accounting contract to calculate the asset split
/// 3. Returns the assets allocated to the specified tranche
function totalAssets(address tranche) public view returns (uint256) {
uint256 totalAssetsOverall = strategy.totalAssets();
(uint256 jrtAssets, uint256 srtAssets, ) = accounting.totalAssets(
totalAssetsOverall
);
if (isJrt(tranche)) {
return jrtAssets;
}
return srtAssets;
}
/// @notice Returns the current total assets held in the strategy
/// @dev This method retrieves the fresh amount of assets directly from the strategy contract
/// @return uint256 The current total assets in the strategy
function totalStrategyAssets() public view returns (uint256) {
return strategy.totalAssets();
}
function pricePerShare(address tranche) public view returns (uint256) {
uint256 assets = totalAssets(tranche);
uint256 supply = ITranche(tranche).totalSupply();
return calculatePricePerShare(assets, supply);
}
function maxDeposit(address tranche) external view returns (uint256) {
bool isJrt_ = isJrt(tranche);
bool isDepositEnabled = isJrt_ ? actionsJrt.isDepositEnabled : actionsSrt.isDepositEnabled;
if (isDepositEnabled == false) {
return 0;
}
return accounting.maxDeposit(isJrt_);
}
function maxWithdraw(address tranche) external view returns (uint256) {
bool isJrt_ = isJrt(tranche);
bool isWithdrawEnabled = isJrt_ ? actionsJrt.isWithdrawEnabled : actionsSrt.isWithdrawEnabled;
if (isWithdrawEnabled == false) {
return 0;
}
return accounting.maxWithdraw(isJrt_);
}
function updateAccounting () external onlyTranche {
uint256 totalAssetsOverall = strategy.totalAssets();
accounting.updateAccounting(totalAssetsOverall);
}
function deposit(address tranche, address token, uint256 tokenAmount, uint256 baseAssets) external onlyTranche nonReentrant {
bool isJrt_ = isJrt(tranche);
bool enabled = isJrt_ ? actionsJrt.isDepositEnabled : actionsSrt.isDepositEnabled;
if (!enabled) {
revert DepositsDisabled(tranche);
}
if (baseAssets > accounting.maxDeposit(isJrt_)) {
revert DepositCapReached(tranche);
}
if (tokenAmount == 0 || baseAssets == 0) {
revert ZeroAmount();
}
strategy.deposit(tranche, token, tokenAmount, baseAssets, /* owner: */ tranche);
uint256 jrtAssetsIn = isJrt_ ? baseAssets : 0;
uint256 srtAssetsIn = isJrt_ ? 0 : baseAssets;
accounting.updateBalanceFlow(jrtAssetsIn, 0, srtAssetsIn, 0);
shortfallPauser();
}
function withdraw(address tranche, address token, uint256 tokenAmount, uint256 baseAssets, address sender, address receiver) external onlyTranche nonReentrant {
bool isJrt_ = isJrt(tranche);
bool enabled = isJrt_ ? actionsJrt.isWithdrawEnabled : actionsSrt.isWithdrawEnabled;
if (!enabled) {
revert WithdrawalsDisabled(tranche);
}
if (baseAssets > accounting.maxWithdraw(isJrt_)) {
revert WithdrawalCapReached(tranche);
}
if (tokenAmount == 0 || baseAssets == 0) {
revert ZeroAmount();
}
strategy.withdraw(tranche, token, tokenAmount, baseAssets, sender, receiver);
uint256 jrtAssetsOut = isJrt_ ? baseAssets : 0;
uint256 srtAssetsOut = isJrt_ ? 0 : baseAssets;
accounting.updateBalanceFlow(0, jrtAssetsOut, 0, srtAssetsOut);
shortfallPauser();
}
/// @notice Determines if the given address is the Junior (BB) Tranche
/// @dev Used to differentiate between Junior and Senior Tranches
/// @param tranche The address to check
/// @return bool True if the address is the Junior Tranche, false if it's the Senior Tranche
/// @dev Reverts with InvalidTranche error if the address is neither Junior nor Senior Tranche
function isJrt (address tranche) public view returns (bool) {
if (tranche == address(jrtVault)) {
return true;
}
if (tranche == address(srtVault)) {
return false;
}
revert InvalidTranche(tranche);
}
/// @notice Configures the CDO with its components
/// @dev Can only be called once by the owner after components deployment
function configure (
IAccounting accounting_,
IStrategy strategy_,
ITranche jrtVault_,
ITranche srtVault_
) external onlyOwner {
if (address(accounting) != address(0)) {
revert AlreadyConfigured();
}
require(address(this) == accounting_.getCDOAddress(), "A1");
require(address(this) == strategy_.getCDOAddress(), "A2");
require(address(this) == jrtVault_.getCDOAddress(), "A3");
require(address(this) == srtVault_.getCDOAddress(), "A4");
accounting = accounting_;
strategy = strategy_;
jrtVault = jrtVault_;
srtVault = srtVault_;
jrtVault_.configure();
srtVault_.configure();
}
/// @notice Reduces the reserve and transfers tokens to the treasury
/// @dev Only callable by RESERVE_MANAGER_ROLE
function reduceReserve (address token, uint256 tokenAmount) external onlyRole(RESERVE_MANAGER_ROLE) {
if (treasury == address(0)) {
revert ZeroAddress();
}
// Reverts if the token is not supported
uint256 baseAssets = strategy.convertToAssets(token, tokenAmount, Math.Rounding.Floor);
// Reverts if not enough reserve
accounting.reduceReserve(baseAssets);
// Transfers tokens out instantly if possible, or through the cooldown process
strategy.reduceReserve(token, tokenAmount, treasury);
emit ReserveReduced(token, tokenAmount);
}
/// @notice Sets the address of the reserve treasury
function setReserveTreasury (address treasury_) external onlyRole(RESERVE_MANAGER_ROLE) {
treasury = treasury_;
emit TreasurySet(treasury_);
}
/// @notice Sets action states for the tranche; zero address affects both tranches
function setActionStates (address tranche, bool isDepositEnabled, bool isWithdrawEnabled) external onlyRole(PAUSER_ROLE) {
if (address(tranche) == address(0)) {
setActionStatesInner(address(jrtVault), isDepositEnabled, isWithdrawEnabled);
setActionStatesInner(address(srtVault), isDepositEnabled, isWithdrawEnabled);
return;
}
setActionStatesInner(tranche, isDepositEnabled, isWithdrawEnabled);
}
/// @notice Internal function to set deposit and withdrawal states for a tranche
function setActionStatesInner (address tranche, bool isDepositEnabled, bool isWithdrawEnabled) internal {
TActionState storage state = isJrt(tranche)? actionsJrt : actionsSrt;
if (state.isDepositEnabled != isDepositEnabled) {
state.isDepositEnabled = isDepositEnabled;
emit DepositsStateChanged(tranche, isDepositEnabled);
}
if (state.isWithdrawEnabled != isWithdrawEnabled) {
state.isWithdrawEnabled = isWithdrawEnabled;
emit WithdrawalsStateChanged(tranche, isWithdrawEnabled);
}
}
/// @notice Sets the JRT shortfall price to automatically pause the deposits, when the price falls below this price
function setJrtShortfallPausePrice (uint256 jrtShortfallPausePrice_) external onlyRole(PAUSER_ROLE) {
// If the shortfall pause price is above current price, deposits must be paused manually by the Pauser
require(jrtShortfallPausePrice_ <= pricePerShare(address(jrtVault)), "ShortfallPriceTooLarge");
jrtShortfallPausePrice = jrtShortfallPausePrice_;
emit JrtShortfallPausePriceSet(jrtShortfallPausePrice_);
}
function shortfallPauser () internal {
(uint256 jrtNav,,) = accounting.totalAssetsT0();
uint256 jrtPrice = calculatePricePerShare(jrtNav, jrtVault.totalSupply());
if (jrtPrice <= jrtShortfallPausePrice) {
actionsJrt.isDepositEnabled = false;
actionsSrt.isDepositEnabled = false;
emit DepositsStateChanged(address(jrtVault), false);
emit DepositsStateChanged(address(srtVault), false);
emit ShortfallPaused();
}
}
function calculatePricePerShare (uint256 assets, uint256 supply) internal pure returns (uint256) {
return supply == 0
? 1e18
: Math.mulDiv(assets, 1e18, supply, Math.Rounding.Floor);
}
}
"
},
"contracts/governance/AccessControlled.sol": {
"content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Ownable2StepUpgradeable } from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import { IAccessControlManager } from "./interfaces/IAccessControlManager.sol";
/**
* @title Strata Access Control Contract.
* @dev The AccessControlled contract is a wrapper around the OpenZeppelin AccessControl contract
* It provides a standardized way to control access to methods within the Strata Smart Contract Ecosystem.
* The contract allows the owner to set an AccessControlManager contract address.
*/
abstract contract AccessControlled is Initializable, Ownable2StepUpgradeable, ReentrancyGuardUpgradeable {
bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE");
bytes32 public constant UPDATER_CDO_APR_ROLE = keccak256("UPDATER_CDO_APR_ROLE");
bytes32 public constant UPDATER_FEED_ROLE = keccak256("UPDATER_FEED_ROLE");
bytes32 public constant UPDATER_STRAT_CONFIG_ROLE = keccak256("UPDATER_STRAT_CONFIG_ROLE");
bytes32 public constant RESERVE_MANAGER_ROLE = keccak256("RESERVE_MANAGER_ROLE");
bytes32 public constant COOLDOWN_WORKER_ROLE = keccak256("COOLDOWN_WORKER_ROLE");
/// @notice Access control manager contract
IAccessControlManager public acm;
uint256[49] private __gap;
/// @notice Emitted when access control manager contract address is changed
event NewAccessControlManager(address accessControlManager);
/// @notice Thrown when the action is prohibited by AccessControlManager
error Unauthorized(address sender, address calledContract, bytes4 sel);
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
error ZeroAddress();
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
modifier onlyRole(bytes32 role) {
_checkRole(role, _msgSender());
_;
}
function AccessControlled_init(address owner, address accessControlManager) internal onlyInitializing {
__Ownable_init_unchained(owner);
__AccessControlled_init_unchained(accessControlManager);
__ReentrancyGuard_init();
}
function __AccessControlled_init_unchained(address accessControlManager) internal onlyInitializing {
setAccessControlManagerInner(accessControlManager);
}
/**
* @notice Sets the address of AccessControlManager
* @dev Admin function to set address of AccessControlManager
* @param accessControlManager_ The new address of the AccessControlManager
* @custom:event Emits NewAccessControlManager event
* @custom:access Only Governance
*/
function setAccessControlManager(address accessControlManager_) external onlyOwner {
setAccessControlManagerInner(accessControlManager_);
}
/**
* @dev Internal function to set address of AccessControlManager
* @param accessControlManager The new address of the AccessControlManager
*/
function setAccessControlManagerInner(address accessControlManager) internal {
if (accessControlManager == address(0)) {
revert ZeroAddress();
}
acm = IAccessControlManager(accessControlManager);
emit NewAccessControlManager(accessControlManager);
}
/**
* @notice Reverts if the call is not allowed by AccessControlManager
* @param sel Method signature
*/
function _checkAccessAllowed(bytes4 sel) internal view {
bool isAllowedToCall = acm.isAllowedToCall(msg.sender, sel);
if (!isAllowedToCall) {
revert Unauthorized(msg.sender, address(this), sel);
}
}
function _checkRole(bytes32 role, address account) internal view virtual {
if (!acm.hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
}
"
},
"contracts/tranches/interfaces/IErrors.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
interface IErrors {
error InvalidTranche(address tranche);
error InvalidCaller(address caller);
error UnsupportedToken(address token);
error AlreadyConfigured();
error MinSharesViolation();
error WithdrawalsDisabled(address tranche);
error DepositsDisabled(address tranche);
error DepositCapReached(address tranche);
error WithdrawalCapReached(address tranche);
error InvalidConfigCooldown();
error ZeroAmount();
}
"
},
"contracts/tranches/interfaces/ITranche.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import { ICDOComponent } from "./ICDOComponent.sol";
import { IMetaVault } from "./IMetaVault.sol";
interface ITranche is ICDOComponent, IMetaVault {
function configure () external;
}
"
},
"@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
"
},
"contracts/tranches/interfaces/ICDOComponent.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
interface ICDOComponent {
function getCDOAddress() external view returns (address);
}
"
},
"contracts/tranches/interfaces/IStrategy.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { ICDOComponent } from "./ICDOComponent.sol";
interface IStrategy is ICDOComponent {
function deposit (address tranche, address token, uint256 tokenAmount, uint256 baseAssets, address owner) external returns (uint256);
function withdraw (address tranche, address token, uint256 tokenAmount, uint256 bseAssets, address sender, address receiver) external returns (uint256);
function totalAssets () external view returns (uint256);
function reduceReserve (address token, uint256 tokenAmount, address receiver) external;
function convertToAssets (address token, uint256 tokenAmount, Math.Rounding rounding) external view returns (uint256 baseAssets);
function convertToTokens (address token, uint256 baseAssets, Math.Rounding rounding) external view returns (uint256 tokenAmount);
function getSupportedTokens () external view returns (IERC20[] memory);
}
"
},
"contracts/tranches/interfaces/IMetaVault.sol": {
"content": "// SPDX-License-Identifier: MIT\r
pragma solidity ^0.8.28;\r
\r
import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";\r
\r
interface IMetaVault is IERC4626 {\r
\r
function deposit(address token, uint256 tokenAssets, address receiver) external returns (uint256);\r
function mint(address token, uint256 shares, address receiver) external returns (uint256);\r
function withdraw(address token, uint256 tokenAssets, address receiver, address owner) external returns (uint256);\r
function redeem(address token, uint256 shares, address receiver, address owner) external returns (uint256);\r
\r
}\r
"
},
"@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {OwnableUpgradeable} from "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable2Step
struct Ownable2StepStorage {
address _pendingOwner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable2Step")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant Ownable2StepStorageLocation = 0x237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00;
function _getOwnable2StepStorage() private pure returns (Ownable2StepStorage storage $) {
assembly {
$.slot := Ownable2StepStorageLocation
}
}
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
function __Ownable2Step_init() internal onlyInitializing {
}
function __Ownable2Step_init_unchained() internal onlyInitializing {
}
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
Ownable2StepStorage storage $ = _getOwnable2StepStorage();
return $._pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*
* Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
Ownable2StepStorage storage $ = _getOwnable2StepStorage();
$._pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
Ownable2StepStorage storage $ = _getOwnable2StepStorage();
delete $._pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
"
},
"@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
/// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
struct ReentrancyGuardStorage {
uint256 _status;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;
function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
assembly {
$.slot := ReentrancyGuardStorageLocation
}
}
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
$._status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
// On the first call to nonReentrant, _status will be NOT_ENTERED
if ($._status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
$._status = ENTERED;
}
function _nonReentrantAfter() private {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
$._status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
return $._status == ENTERED;
}
}
"
},
"contracts/governance/interfaces/IAccessControlManager.sol": {
"content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;
import { IAccessControl } from "@openzeppelin/contracts/access/IAccessControl.sol";
interface IAccessControlManager is IAccessControl {
function grantCall(address contractAddress, bytes4 sel, address accountToPermit) external;
function revokeCall(
address contractAddress,
bytes4 sel,
address accountToRevoke
) external;
function isAllowedToCall(address account, bytes4 sel) external view returns (bool);
function hasPermission(
address account,
address contractAddress,
bytes4 sel
) external view returns (bool);
}
"
},
"@openzeppelin/contracts/utils/Panic.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
"
},
"@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This me
Submitted on: 2025-10-02 20:52:45
Comments
Log in to comment.
No comments yet.