BoraBoraPayments

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "contracts/BoraBoraPayments_flattened.sol": {
      "content": "// SPDX-License-Identifier: MIT

// File: @openzeppelin/contracts/utils/ReentrancyGuard.sol

// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// File: @openzeppelin/contracts/utils/Context.sol


// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// File: @openzeppelin/contracts/utils/Pausable.sol


// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;


/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

// File: @openzeppelin/contracts/access/Ownable.sol


// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;


/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// File: @openzeppelin/contracts/utils/Errors.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// File: @openzeppelin/contracts/utils/Address.sol


// OpenZeppelin Contracts (last updated v5.4.0) (utils/Address.sol)

pragma solidity ^0.8.20;


/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, bytes memory returndata) = recipient.call{value: amount}("");
        if (!success) {
            _revert(returndata);
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                revert(add(returndata, 0x20), mload(returndata))
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// File: @openzeppelin/contracts/token/ERC20/IERC20.sol


// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// File: @openzeppelin/contracts/interfaces/IERC20.sol


// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)

pragma solidity >=0.4.16;


// File: @openzeppelin/contracts/utils/introspection/IERC165.sol


// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// File: @openzeppelin/contracts/interfaces/IERC165.sol


// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)

pragma solidity >=0.4.16;


// File: @openzeppelin/contracts/interfaces/IERC1363.sol


// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)

pragma solidity >=0.6.2;



/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// File: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol


// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;



/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// File: contracts/BoraBoraPaymentsV3.sol

pragma solidity ^0.8.20;


/**
 * @title Bora Bora Payments
 * @dev Contract to handle crypto payments with automatic splitting between platform and community wallets
 * @notice This contract uses signature verification to ensure secure payments without storing wallet configurations on-chain
 */
contract BoraBoraPayments is ReentrancyGuard, Pausable, Ownable {
    using Address for address payable;
    using SafeERC20 for IERC20;

    // Maximum fee percentage in basis points (100% = 10000 basis points)
    uint16 public constant MAX_FEE_PERCENT = 10000;

    // Maximum memo length (100 characters)
    uint256 public constant MAX_MEMO_LENGTH = 100;

    // secp256k1 curve order for signature normalization
    uint256 private constant SECP256K1N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141;


    // Mapping to track signature expiration times (timestamp + 600)
    mapping(bytes32 => uint256) public signatureExpirations;

    // Events
    event PaymentSplit(
        address indexed from,
        address indexed communityWallet,
        address indexed platformWallet,
        string memo,
        uint256 platformAmount,
        uint256 communityAmount,
        uint16 feePercentage
    );

    event TokenPaymentSplit(
        address indexed from,
        address indexed tokenAddress,
        address indexed communityWallet,
        address platformWallet,
        string memo,
        uint256 platformAmount,
        uint256 communityAmount,
        uint16 feePercentage
    );

    event EmergencyWithdraw(
        address indexed to,
        uint256 amount,
        address indexed executor
    );

    // Custom errors
    error InvalidWallet();
    error InvalidFeePercent();
    error InsufficientAmount();
    error TransferFailed();
    error InvalidMemo();
    error MemoTooLong();
    error InvalidSignature();
    error SignatureExpired();
    error SignatureAlreadyUsed();

    constructor()
    Ownable(msg.sender)
    ReentrancyGuard()
    Pausable()
    {
    }

    /**
     * @dev Secure payment function with signature verification - splits payment between platform and community wallet
     * @param communityWallet The community wallet to receive the payment
     * @param platformWallet The platform wallet to receive the fee
     * @param feePercentage The fee in basis points (0-10000)
     * @param memo Memo field for payment identification (e.g., payment_id or user_id)
     * @param timestamp Timestamp when signature was created (must be recent)
     * @param signature Signature from authorized backend signer
     */
    function payWithSplitSecure(
        address communityWallet,
        address platformWallet,
        uint16 feePercentage,
        string calldata memo,
        uint256 timestamp,
        bytes calldata signature
    ) external payable nonReentrant whenNotPaused {
        if (communityWallet == address(0)) revert InvalidWallet();
        if (platformWallet == address(0)) revert InvalidWallet();
        if (communityWallet == platformWallet) revert InvalidWallet();
        if (feePercentage > MAX_FEE_PERCENT) revert InvalidFeePercent();
        if (bytes(memo).length == 0) revert InvalidMemo();
        if (bytes(memo).length > MAX_MEMO_LENGTH) revert MemoTooLong();
        if (msg.value == 0) revert InsufficientAmount();

        // Verify signature is not expired (10 minute window)
        unchecked {
            if (block.timestamp > timestamp + 600 || timestamp > block.timestamp + 60) {
                revert SignatureExpired();
            }
        }

        // Create and verify signature hash
        bytes32 ethSignedHash = keccak256(abi.encodePacked(
            "\x19Ethereum Signed Message:\
32",
            keccak256(abi.encode(
                communityWallet,
                platformWallet,
                feePercentage,
                memo,
                msg.value,
                msg.sender,
                timestamp,
                address(this)
            ))
        ));

        // Check signature hasn't been used and auto-cleanup if expired
        if (signatureExpirations[ethSignedHash] > 0) {
            if (block.timestamp > signatureExpirations[ethSignedHash]) {
                // Auto-cleanup expired signature
                delete signatureExpirations[ethSignedHash];
            } else {
                // Signature still valid and already used
                revert SignatureAlreadyUsed();
            }
        }

        // Verify signature
        if (_recoverSigner(ethSignedHash, signature) != owner()) revert InvalidSignature();

        // Mark signature as used with expiration time
        signatureExpirations[ethSignedHash] = timestamp + 600;

        // Process payment and emit event
        _processPayment(communityWallet, platformWallet, feePercentage, memo, msg.value);
    }

    /**
     * @dev Secure token payment function with signature verification - splits ERC-20 token payment between platform and community wallet
     * @param tokenAddress The ERC-20 token contract address
     * @param communityWallet The community wallet to receive the payment
     * @param platformWallet The platform wallet to receive the fee
     * @param feePercentage The fee in basis points (0-10000)
     * @param amount The amount of tokens to transfer
     * @param memo Memo field for payment identification (e.g., payment_id or user_id)
     * @param timestamp Timestamp when signature was created (must be recent)
     * @param signature Signature from authorized backend signer
     */
    function payWithSplitTokenSecure(
        address tokenAddress,
        address communityWallet,
        address platformWallet,
        uint16 feePercentage,
        uint256 amount,
        string calldata memo,
        uint256 timestamp,
        bytes calldata signature
    ) external nonReentrant whenNotPaused {
        if (tokenAddress == address(0)) revert InvalidWallet();
        if (communityWallet == address(0)) revert InvalidWallet();
        if (platformWallet == address(0)) revert InvalidWallet();
        if (communityWallet == platformWallet) revert InvalidWallet();
        if (feePercentage > MAX_FEE_PERCENT) revert InvalidFeePercent();
        if (bytes(memo).length == 0) revert InvalidMemo();
        if (bytes(memo).length > MAX_MEMO_LENGTH) revert MemoTooLong();
        if (amount == 0) revert InsufficientAmount();

        // Verify signature is not expired (10 minute window)
        unchecked {
            if (block.timestamp > timestamp + 600 || timestamp > block.timestamp + 60) {
                revert SignatureExpired();
            }
        }

        // Create and verify signature hash
        bytes32 ethSignedHash = keccak256(abi.encodePacked(
            "\x19Ethereum Signed Message:\
32",
            keccak256(abi.encode(
                tokenAddress,
                communityWallet,
                platformWallet,
                feePercentage,
                amount,
                memo,
                msg.sender,
                timestamp,
                address(this)
            ))
        ));

        // Check signature hasn't been used and auto-cleanup if expired
        if (signatureExpirations[ethSignedHash] > 0) {
            if (block.timestamp > signatureExpirations[ethSignedHash]) {
                // Auto-cleanup expired signature
                delete signatureExpirations[ethSignedHash];
            } else {
                // Signature still valid and already used
                revert SignatureAlreadyUsed();
            }
        }

        // Verify signature
        if (_recoverSigner(ethSignedHash, signature) != owner()) revert InvalidSignature();

        // Mark signature as used with expiration time
        signatureExpirations[ethSignedHash] = timestamp + 600;

        IERC20 token = IERC20(tokenAddress);

        // Check allowance and balance
        uint256 allowance = token.allowance(msg.sender, address(this));
        if (allowance < amount) revert InsufficientAmount();

        uint256 senderBalance = token.balanceOf(msg.sender);
        if (senderBalance < amount) revert InsufficientAmount();

        // Process token payment and emit event
        _processTokenPayment(tokenAddress, communityWallet, platformWallet, feePercentage, amount, memo);
    }

    /**
     * @dev Pause the contract (only owner)
     */
    function pause() external onlyOwner {
        _pause();
    }

    /**
     * @dev Unpause the contract (only owner)
     */
    function unpause() external onlyOwner {
        _unpause();
    }

    /**
     * @dev Emergency withdrawal function (only in case of stuck funds)
     * @param to Address to send funds to
     * @param amount Amount to withdraw
     */
    function emergencyWithdraw(address payable to, uint256 amount) external onlyOwner nonReentrant {
        if (to == address(0)) revert InvalidWallet();
        if (amount == 0) revert InsufficientAmount();
        if (amount > address(this).balance) revert InsufficientAmount();

        Address.sendValue(to, amount);

        emit EmergencyWithdraw(to, amount, msg.sender);
    }

    /**
     * @dev Get contract balance
     * @return The current contract balance
     */
    function getBalance() external view returns (uint256) {
        return address(this).balance;
    }

    /**
     * @dev Disable renounceOwnership to prevent accidental loss of admin control
     * @dev This prevents permanently locking out emergency functions and fund recovery
     */
    function renounceOwnership() public pure override {
        revert("Ownership cannot be renounced");
    }


    /**
     * @dev Clean up expired signatures to save storage (automated maintenance)
     * @param signatureHashes Array of signature hashes to clean up
     */
    function cleanupExpiredSignatures(bytes32[] calldata signatureHashes) external {
        if (signatureHashes.length > 100) revert InsufficientAmount(); // Prevent gas limit issues
        for (uint i = 0; i < signatureHashes.length; i++) {
            // Only cleanup if signature is expired
            if (block.timestamp > signatureExpirations[signatureHashes[i]]) {
                delete signatureExpirations[signatureHashes[i]];
            }
        }
    }

    /**
     * @dev Internal function to process ETH payment and emit event
     * @param communityWallet The community wallet address
     * @param platformWallet The platform wallet address
     * @param feePercentage The fee in basis points
     * @param memo The payment memo
     * @param amount The payment amount
     */
    function _processPayment(
        address communityWallet,
        address platformWallet,
        uint16 feePercentage,
        string calldata memo,
        uint256 amount
    ) internal {
        uint256 platformAmount;
        uint256 communityAmount;

        // Use unchecked math for gas optimization (overflow impossible with fee <= 10000 bps)
        // Round up platform fee to prevent precision loss (basis points)
        unchecked {
            platformAmount = (amount * feePercentage + 9999) / 10000;
            communityAmount = amount - platformAmount;
        }

        // Transfer to platform wallet
        if (platformAmount > 0) {
            Address.sendValue(payable(platformWallet), platformAmount);
        }

        // Transfer to community wallet
        if (communityAmount > 0) {
            Address.sendValue(payable(communityWallet), communityAmount);
        }

        emit PaymentSplit(
            msg.sender,
            communityWallet,
            platformWallet,
            memo,
            platformAmount,
            communityAmount,
            feePercentage
        );
    }

    /**
     * @dev Internal function to process token payment and emit event
     * @param tokenAddress The token contract address
     * @param communityWallet The community wallet address
     * @param platformWallet The platform wallet address
     * @param feePercentage The fee in basis points
     * @param amount The payment amount
     * @param memo The payment memo
     */
    function _processTokenPayment(
        address tokenAddress,
        address communityWallet,
        address platformWallet,
        uint16 feePercentage,
        uint256 amount,
        string calldata memo
    ) internal {
        IERC20 token = IERC20(tokenAddress);
        uint256 platformAmount;
        uint256 communityAmount;

        // Use unchecked math for gas optimization (overflow impossible with fee <= 10000 bps)
        // Round up platform fee to prevent precision loss (basis points)
        unchecked {
            platformAmount = (amount * feePercentage + 9999) / 10000;
            communityAmount = amount - platformAmount;
        }

        // Transfer tokens from sender to this contract first
        token.safeTransferFrom(msg.sender, address(this), amount);

        // Transfer to platform wallet
        if (platformAmount > 0) {
            token.safeTransfer(platformWallet, platformAmount);
        }

        // Transfer to community wallet
        if (communityAmount > 0) {
            token.safeTransfer(communityWallet, communityAmount);
        }

        emit TokenPaymentSplit(
            msg.sender,
            tokenAddress,
            communityWallet,
            platformWallet,
            memo,
            platformAmount,
            communityAmount,
            feePercentage
        );
    }

    /**
     * @dev Internal function to recover signer from signature
     * @param hash The message hash that was signed
     * @param signature The signature bytes
     * @return The address that created the signature
     */
    function _recoverSigner(bytes32 hash, bytes memory signature) internal pure returns (address) {
        if (signature.length != 65) {
            return address(0);
        }

        bytes32 r;
        bytes32 s;
        uint8 v;

        assembly {
            r := mload(add(signature, 0x20))
            s := mload(add(signature, 0x40))
            v := byte(0, mload(add(signature, 0x60)))
        }

        if (v < 27) {
            v += 27;
        }

        if (v != 27 && v != 28) {
            return address(0);
        }

        // Normalize s value to prevent signature malleability
        if (uint256(s) > SECP256K1N / 2) {
            s = bytes32(SECP256K1N - uint256(s));
            v = v == 27 ? 28 : 27;
        }

        return ecrecover(hash, v, r, s);
    }

    /**
     * @dev Fallback function to reject direct ETH transfers
     */
    receive() external payable {
        revert("Direct transfers not allowed, use payWithSplitSecure");
    }
}
"
    }
  },
  "settings": {
    "evmVersion": "shanghai",
    "metadata": {
      "bytecodeHash": "ipfs"
    },
    "optimizer": {
      "enabled": true,
      "runs": 200
    },
    "viaIR": true,
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "abi"
        ]
      }
    }
  }
}}

Tags:
ERC20, ERC165, Multisig, Pausable, Upgradeable, Multi-Signature, Factory|addr:0xc1d387effd3ec49d2ca19187d67ab6be56676319|verified:true|block:23506816|tx:0x278d6eb29953190d34fc38abaa082bd1c5b6026a2838d294b027d567506bf673|first_check:1759647037

Submitted on: 2025-10-05 08:50:39

Comments

Log in to comment.

No comments yet.