Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/BoraBoraPayments_flattened.sol": {
"content": "// SPDX-License-Identifier: MIT
// File: @openzeppelin/contracts/utils/ReentrancyGuard.sol
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// File: @openzeppelin/contracts/utils/Context.sol
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// File: @openzeppelin/contracts/utils/Pausable.sol
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: @openzeppelin/contracts/utils/Errors.sol
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}
// File: @openzeppelin/contracts/utils/Address.sol
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, bytes memory returndata) = recipient.call{value: amount}("");
if (!success) {
_revert(returndata);
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
revert(add(returndata, 0x20), mload(returndata))
}
} else {
revert Errors.FailedCall();
}
}
}
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// File: @openzeppelin/contracts/interfaces/IERC20.sol
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)
pragma solidity >=0.4.16;
// File: @openzeppelin/contracts/utils/introspection/IERC165.sol
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File: @openzeppelin/contracts/interfaces/IERC165.sol
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)
pragma solidity >=0.4.16;
// File: @openzeppelin/contracts/interfaces/IERC1363.sol
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)
pragma solidity >=0.6.2;
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
// File: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}
// File: contracts/BoraBoraPaymentsV3.sol
pragma solidity ^0.8.20;
/**
* @title Bora Bora Payments
* @dev Contract to handle crypto payments with automatic splitting between platform and community wallets
* @notice This contract uses signature verification to ensure secure payments without storing wallet configurations on-chain
*/
contract BoraBoraPayments is ReentrancyGuard, Pausable, Ownable {
using Address for address payable;
using SafeERC20 for IERC20;
// Maximum fee percentage in basis points (100% = 10000 basis points)
uint16 public constant MAX_FEE_PERCENT = 10000;
// Maximum memo length (100 characters)
uint256 public constant MAX_MEMO_LENGTH = 100;
// secp256k1 curve order for signature normalization
uint256 private constant SECP256K1N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141;
// Mapping to track signature expiration times (timestamp + 600)
mapping(bytes32 => uint256) public signatureExpirations;
// Events
event PaymentSplit(
address indexed from,
address indexed communityWallet,
address indexed platformWallet,
string memo,
uint256 platformAmount,
uint256 communityAmount,
uint16 feePercentage
);
event TokenPaymentSplit(
address indexed from,
address indexed tokenAddress,
address indexed communityWallet,
address platformWallet,
string memo,
uint256 platformAmount,
uint256 communityAmount,
uint16 feePercentage
);
event EmergencyWithdraw(
address indexed to,
uint256 amount,
address indexed executor
);
// Custom errors
error InvalidWallet();
error InvalidFeePercent();
error InsufficientAmount();
error TransferFailed();
error InvalidMemo();
error MemoTooLong();
error InvalidSignature();
error SignatureExpired();
error SignatureAlreadyUsed();
constructor()
Ownable(msg.sender)
ReentrancyGuard()
Pausable()
{
}
/**
* @dev Secure payment function with signature verification - splits payment between platform and community wallet
* @param communityWallet The community wallet to receive the payment
* @param platformWallet The platform wallet to receive the fee
* @param feePercentage The fee in basis points (0-10000)
* @param memo Memo field for payment identification (e.g., payment_id or user_id)
* @param timestamp Timestamp when signature was created (must be recent)
* @param signature Signature from authorized backend signer
*/
function payWithSplitSecure(
address communityWallet,
address platformWallet,
uint16 feePercentage,
string calldata memo,
uint256 timestamp,
bytes calldata signature
) external payable nonReentrant whenNotPaused {
if (communityWallet == address(0)) revert InvalidWallet();
if (platformWallet == address(0)) revert InvalidWallet();
if (communityWallet == platformWallet) revert InvalidWallet();
if (feePercentage > MAX_FEE_PERCENT) revert InvalidFeePercent();
if (bytes(memo).length == 0) revert InvalidMemo();
if (bytes(memo).length > MAX_MEMO_LENGTH) revert MemoTooLong();
if (msg.value == 0) revert InsufficientAmount();
// Verify signature is not expired (10 minute window)
unchecked {
if (block.timestamp > timestamp + 600 || timestamp > block.timestamp + 60) {
revert SignatureExpired();
}
}
// Create and verify signature hash
bytes32 ethSignedHash = keccak256(abi.encodePacked(
"\x19Ethereum Signed Message:\
32",
keccak256(abi.encode(
communityWallet,
platformWallet,
feePercentage,
memo,
msg.value,
msg.sender,
timestamp,
address(this)
))
));
// Check signature hasn't been used and auto-cleanup if expired
if (signatureExpirations[ethSignedHash] > 0) {
if (block.timestamp > signatureExpirations[ethSignedHash]) {
// Auto-cleanup expired signature
delete signatureExpirations[ethSignedHash];
} else {
// Signature still valid and already used
revert SignatureAlreadyUsed();
}
}
// Verify signature
if (_recoverSigner(ethSignedHash, signature) != owner()) revert InvalidSignature();
// Mark signature as used with expiration time
signatureExpirations[ethSignedHash] = timestamp + 600;
// Process payment and emit event
_processPayment(communityWallet, platformWallet, feePercentage, memo, msg.value);
}
/**
* @dev Secure token payment function with signature verification - splits ERC-20 token payment between platform and community wallet
* @param tokenAddress The ERC-20 token contract address
* @param communityWallet The community wallet to receive the payment
* @param platformWallet The platform wallet to receive the fee
* @param feePercentage The fee in basis points (0-10000)
* @param amount The amount of tokens to transfer
* @param memo Memo field for payment identification (e.g., payment_id or user_id)
* @param timestamp Timestamp when signature was created (must be recent)
* @param signature Signature from authorized backend signer
*/
function payWithSplitTokenSecure(
address tokenAddress,
address communityWallet,
address platformWallet,
uint16 feePercentage,
uint256 amount,
string calldata memo,
uint256 timestamp,
bytes calldata signature
) external nonReentrant whenNotPaused {
if (tokenAddress == address(0)) revert InvalidWallet();
if (communityWallet == address(0)) revert InvalidWallet();
if (platformWallet == address(0)) revert InvalidWallet();
if (communityWallet == platformWallet) revert InvalidWallet();
if (feePercentage > MAX_FEE_PERCENT) revert InvalidFeePercent();
if (bytes(memo).length == 0) revert InvalidMemo();
if (bytes(memo).length > MAX_MEMO_LENGTH) revert MemoTooLong();
if (amount == 0) revert InsufficientAmount();
// Verify signature is not expired (10 minute window)
unchecked {
if (block.timestamp > timestamp + 600 || timestamp > block.timestamp + 60) {
revert SignatureExpired();
}
}
// Create and verify signature hash
bytes32 ethSignedHash = keccak256(abi.encodePacked(
"\x19Ethereum Signed Message:\
32",
keccak256(abi.encode(
tokenAddress,
communityWallet,
platformWallet,
feePercentage,
amount,
memo,
msg.sender,
timestamp,
address(this)
))
));
// Check signature hasn't been used and auto-cleanup if expired
if (signatureExpirations[ethSignedHash] > 0) {
if (block.timestamp > signatureExpirations[ethSignedHash]) {
// Auto-cleanup expired signature
delete signatureExpirations[ethSignedHash];
} else {
// Signature still valid and already used
revert SignatureAlreadyUsed();
}
}
// Verify signature
if (_recoverSigner(ethSignedHash, signature) != owner()) revert InvalidSignature();
// Mark signature as used with expiration time
signatureExpirations[ethSignedHash] = timestamp + 600;
IERC20 token = IERC20(tokenAddress);
// Check allowance and balance
uint256 allowance = token.allowance(msg.sender, address(this));
if (allowance < amount) revert InsufficientAmount();
uint256 senderBalance = token.balanceOf(msg.sender);
if (senderBalance < amount) revert InsufficientAmount();
// Process token payment and emit event
_processTokenPayment(tokenAddress, communityWallet, platformWallet, feePercentage, amount, memo);
}
/**
* @dev Pause the contract (only owner)
*/
function pause() external onlyOwner {
_pause();
}
/**
* @dev Unpause the contract (only owner)
*/
function unpause() external onlyOwner {
_unpause();
}
/**
* @dev Emergency withdrawal function (only in case of stuck funds)
* @param to Address to send funds to
* @param amount Amount to withdraw
*/
function emergencyWithdraw(address payable to, uint256 amount) external onlyOwner nonReentrant {
if (to == address(0)) revert InvalidWallet();
if (amount == 0) revert InsufficientAmount();
if (amount > address(this).balance) revert InsufficientAmount();
Address.sendValue(to, amount);
emit EmergencyWithdraw(to, amount, msg.sender);
}
/**
* @dev Get contract balance
* @return The current contract balance
*/
function getBalance() external view returns (uint256) {
return address(this).balance;
}
/**
* @dev Disable renounceOwnership to prevent accidental loss of admin control
* @dev This prevents permanently locking out emergency functions and fund recovery
*/
function renounceOwnership() public pure override {
revert("Ownership cannot be renounced");
}
/**
* @dev Clean up expired signatures to save storage (automated maintenance)
* @param signatureHashes Array of signature hashes to clean up
*/
function cleanupExpiredSignatures(bytes32[] calldata signatureHashes) external {
if (signatureHashes.length > 100) revert InsufficientAmount(); // Prevent gas limit issues
for (uint i = 0; i < signatureHashes.length; i++) {
// Only cleanup if signature is expired
if (block.timestamp > signatureExpirations[signatureHashes[i]]) {
delete signatureExpirations[signatureHashes[i]];
}
}
}
/**
* @dev Internal function to process ETH payment and emit event
* @param communityWallet The community wallet address
* @param platformWallet The platform wallet address
* @param feePercentage The fee in basis points
* @param memo The payment memo
* @param amount The payment amount
*/
function _processPayment(
address communityWallet,
address platformWallet,
uint16 feePercentage,
string calldata memo,
uint256 amount
) internal {
uint256 platformAmount;
uint256 communityAmount;
// Use unchecked math for gas optimization (overflow impossible with fee <= 10000 bps)
// Round up platform fee to prevent precision loss (basis points)
unchecked {
platformAmount = (amount * feePercentage + 9999) / 10000;
communityAmount = amount - platformAmount;
}
// Transfer to platform wallet
if (platformAmount > 0) {
Address.sendValue(payable(platformWallet), platformAmount);
}
// Transfer to community wallet
if (communityAmount > 0) {
Address.sendValue(payable(communityWallet), communityAmount);
}
emit PaymentSplit(
msg.sender,
communityWallet,
platformWallet,
memo,
platformAmount,
communityAmount,
feePercentage
);
}
/**
* @dev Internal function to process token payment and emit event
* @param tokenAddress The token contract address
* @param communityWallet The community wallet address
* @param platformWallet The platform wallet address
* @param feePercentage The fee in basis points
* @param amount The payment amount
* @param memo The payment memo
*/
function _processTokenPayment(
address tokenAddress,
address communityWallet,
address platformWallet,
uint16 feePercentage,
uint256 amount,
string calldata memo
) internal {
IERC20 token = IERC20(tokenAddress);
uint256 platformAmount;
uint256 communityAmount;
// Use unchecked math for gas optimization (overflow impossible with fee <= 10000 bps)
// Round up platform fee to prevent precision loss (basis points)
unchecked {
platformAmount = (amount * feePercentage + 9999) / 10000;
communityAmount = amount - platformAmount;
}
// Transfer tokens from sender to this contract first
token.safeTransferFrom(msg.sender, address(this), amount);
// Transfer to platform wallet
if (platformAmount > 0) {
token.safeTransfer(platformWallet, platformAmount);
}
// Transfer to community wallet
if (communityAmount > 0) {
token.safeTransfer(communityWallet, communityAmount);
}
emit TokenPaymentSplit(
msg.sender,
tokenAddress,
communityWallet,
platformWallet,
memo,
platformAmount,
communityAmount,
feePercentage
);
}
/**
* @dev Internal function to recover signer from signature
* @param hash The message hash that was signed
* @param signature The signature bytes
* @return The address that created the signature
*/
function _recoverSigner(bytes32 hash, bytes memory signature) internal pure returns (address) {
if (signature.length != 65) {
return address(0);
}
bytes32 r;
bytes32 s;
uint8 v;
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
if (v < 27) {
v += 27;
}
if (v != 27 && v != 28) {
return address(0);
}
// Normalize s value to prevent signature malleability
if (uint256(s) > SECP256K1N / 2) {
s = bytes32(SECP256K1N - uint256(s));
v = v == 27 ? 28 : 27;
}
return ecrecover(hash, v, r, s);
}
/**
* @dev Fallback function to reject direct ETH transfers
*/
receive() external payable {
revert("Direct transfers not allowed, use payWithSplitSecure");
}
}
"
}
},
"settings": {
"evmVersion": "shanghai",
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"viaIR": true,
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"abi"
]
}
}
}
}}
Submitted on: 2025-10-05 08:50:39
Comments
Log in to comment.
No comments yet.