Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/Adapters/MorphoSiusdUsdcLoopStrategyBalanceAdapter.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import {IMorpho, MarketParams, Id, Market, Position} from "../../lib/morpho-blue/src/interfaces/IMorpho.sol";
contract MorphoSiusdUsdcLoopStrategyBalanceAdapter {
IMorpho private morpho;
Id public immutable marketId;
address public constant MORPHO = 0xBBBBBbbBBb9cC5e90e3b3Af64bdAF62C37EEFFCb;
address public MORPHO_CHAINLINK_ORACLE;
constructor(bytes32 _marketId) {
marketId = Id.wrap(_marketId);
morpho = IMorpho(MORPHO);
MarketParams memory marketParams = morpho.idToMarketParams(marketId);
MORPHO_CHAINLINK_ORACLE = marketParams.oracle;
}
/// @dev should return TVL in USDC terms
function getUserTvl(address _user) external view returns (uint256 tvl) {
(uint256 collateral, uint256 debt, uint256 supplied) = getUserPositionValues(_user);
tvl = (collateral) + supplied - debt;
}
/// @dev should return position values in USDC terms
function getUserPositionValues(address _user)
public
view
returns (uint256 collateral, uint256 debt, uint256 supplied)
{
Market memory marketState = morpho.market(marketId);
Position memory userPosition = morpho.position(marketId, _user);
bytes memory payload = abi.encodeWithSignature("price()");
(bool success, bytes memory returnData) = address(MORPHO_CHAINLINK_ORACLE).staticcall(payload);
require(success, "staticcall failed");
uint256 rate = abi.decode(returnData, (uint256));
supplied = (userPosition.supplyShares * marketState.totalSupplyAssets) / marketState.totalSupplyShares;
debt = (userPosition.borrowShares * marketState.totalBorrowAssets) / marketState.totalBorrowShares;
collateral = userPosition.collateral;
collateral = (collateral * rate) / 1e36;
}
function getLtv(address _user) public view returns (uint256 ltv) {
Market memory marketState = morpho.market(marketId);
Position memory userPosition = morpho.position(marketId, _user);
bytes memory payload = abi.encodeWithSignature("price()");
(bool success, bytes memory returnData) = address(MORPHO_CHAINLINK_ORACLE).staticcall(payload);
require(success, "staticcall failed");
uint256 rate = abi.decode(returnData, (uint256));
uint256 debt = (userPosition.borrowShares * marketState.totalBorrowAssets) / marketState.totalBorrowShares;
uint256 collateral = userPosition.collateral;
collateral = (collateral * rate) / 1e36;
ltv = debt * 1e18 / collateral;
}
}
"
},
"lib/morpho-blue/src/interfaces/IMorpho.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
type Id is bytes32;
struct MarketParams {
address loanToken;
address collateralToken;
address oracle;
address irm;
uint256 lltv;
}
/// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
/// accrual.
struct Position {
uint256 supplyShares;
uint128 borrowShares;
uint128 collateral;
}
/// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalSupplyShares` does not contain the additional shares accrued by `feeRecipient` since the last
/// interest accrual.
struct Market {
uint128 totalSupplyAssets;
uint128 totalSupplyShares;
uint128 totalBorrowAssets;
uint128 totalBorrowShares;
uint128 lastUpdate;
uint128 fee;
}
struct Authorization {
address authorizer;
address authorized;
bool isAuthorized;
uint256 nonce;
uint256 deadline;
}
struct Signature {
uint8 v;
bytes32 r;
bytes32 s;
}
/// @dev This interface is used for factorizing IMorphoStaticTyping and IMorpho.
/// @dev Consider using the IMorpho interface instead of this one.
interface IMorphoBase {
/// @notice The EIP-712 domain separator.
/// @dev Warning: Every EIP-712 signed message based on this domain separator can be reused on chains sharing the
/// same chain id and on forks because the domain separator would be the same.
function DOMAIN_SEPARATOR() external view returns (bytes32);
/// @notice The owner of the contract.
/// @dev It has the power to change the owner.
/// @dev It has the power to set fees on markets and set the fee recipient.
/// @dev It has the power to enable but not disable IRMs and LLTVs.
function owner() external view returns (address);
/// @notice The fee recipient of all markets.
/// @dev The recipient receives the fees of a given market through a supply position on that market.
function feeRecipient() external view returns (address);
/// @notice Whether the `irm` is enabled.
function isIrmEnabled(address irm) external view returns (bool);
/// @notice Whether the `lltv` is enabled.
function isLltvEnabled(uint256 lltv) external view returns (bool);
/// @notice Whether `authorized` is authorized to modify `authorizer`'s position on all markets.
/// @dev Anyone is authorized to modify their own positions, regardless of this variable.
function isAuthorized(address authorizer, address authorized) external view returns (bool);
/// @notice The `authorizer`'s current nonce. Used to prevent replay attacks with EIP-712 signatures.
function nonce(address authorizer) external view returns (uint256);
/// @notice Sets `newOwner` as `owner` of the contract.
/// @dev Warning: No two-step transfer ownership.
/// @dev Warning: The owner can be set to the zero address.
function setOwner(address newOwner) external;
/// @notice Enables `irm` as a possible IRM for market creation.
/// @dev Warning: It is not possible to disable an IRM.
function enableIrm(address irm) external;
/// @notice Enables `lltv` as a possible LLTV for market creation.
/// @dev Warning: It is not possible to disable a LLTV.
function enableLltv(uint256 lltv) external;
/// @notice Sets the `newFee` for the given market `marketParams`.
/// @param newFee The new fee, scaled by WAD.
/// @dev Warning: The recipient can be the zero address.
function setFee(MarketParams memory marketParams, uint256 newFee) external;
/// @notice Sets `newFeeRecipient` as `feeRecipient` of the fee.
/// @dev Warning: If the fee recipient is set to the zero address, fees will accrue there and will be lost.
/// @dev Modifying the fee recipient will allow the new recipient to claim any pending fees not yet accrued. To
/// ensure that the current recipient receives all due fees, accrue interest manually prior to making any changes.
function setFeeRecipient(address newFeeRecipient) external;
/// @notice Creates the market `marketParams`.
/// @dev Here is the list of assumptions on the market's dependencies (tokens, IRM and oracle) that guarantees
/// Morpho behaves as expected:
/// - The token should be ERC-20 compliant, except that it can omit return values on `transfer` and `transferFrom`.
/// - The token balance of Morpho should only decrease on `transfer` and `transferFrom`. In particular, tokens with
/// burn functions are not supported.
/// - The token should not re-enter Morpho on `transfer` nor `transferFrom`.
/// - The token balance of the sender (resp. receiver) should decrease (resp. increase) by exactly the given amount
/// on `transfer` and `transferFrom`. In particular, tokens with fees on transfer are not supported.
/// - The IRM should not re-enter Morpho.
/// - The oracle should return a price with the correct scaling.
/// - The oracle price should not be able to change instantly such that the new price is less than the old price
/// multiplied by LLTV*LIF. In particular, if the loan asset is a vault that can receive donations, the oracle
/// should not price its shares using the AUM.
/// @dev Here is a list of assumptions on the market's dependencies which, if broken, could break Morpho's liveness
/// properties (funds could get stuck):
/// - The token should not revert on `transfer` and `transferFrom` if balances and approvals are right.
/// - The amount of assets supplied and borrowed should not be too high (max ~1e32), otherwise the number of shares
/// might not fit within 128 bits.
/// - The IRM should not revert on `borrowRate`.
/// - The IRM should not return a very high borrow rate (otherwise the computation of `interest` in
/// `_accrueInterest` can overflow).
/// - The oracle should not revert `price`.
/// - The oracle should not return a very high price (otherwise the computation of `maxBorrow` in `_isHealthy` or of
/// `assetsRepaid` in `liquidate` can overflow).
/// @dev The borrow share price of a market with less than 1e4 assets borrowed can be decreased by manipulations, to
/// the point where `totalBorrowShares` is very large and borrowing overflows.
function createMarket(MarketParams memory marketParams) external;
/// @notice Supplies `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
/// `onMorphoSupply` function with the given `data`.
/// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
/// caller is guaranteed to have `assets` tokens pulled from their balance, but the possibility to mint a specific
/// amount of shares is given for full compatibility and precision.
/// @dev Supplying a large amount can revert for overflow.
/// @dev Supplying an amount of shares may lead to supply more or fewer assets than expected due to slippage.
/// Consider using the `assets` parameter to avoid this.
/// @param marketParams The market to supply assets to.
/// @param assets The amount of assets to supply.
/// @param shares The amount of shares to mint.
/// @param onBehalf The address that will own the increased supply position.
/// @param data Arbitrary data to pass to the `onMorphoSupply` callback. Pass empty data if not needed.
/// @return assetsSupplied The amount of assets supplied.
/// @return sharesSupplied The amount of shares minted.
function supply(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
bytes memory data
) external returns (uint256 assetsSupplied, uint256 sharesSupplied);
/// @notice Withdraws `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
/// @dev Either `assets` or `shares` should be zero. To withdraw max, pass the `shares`'s balance of `onBehalf`.
/// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
/// @dev Withdrawing an amount corresponding to more shares than supplied will revert for underflow.
/// @dev It is advised to use the `shares` input when withdrawing the full position to avoid reverts due to
/// conversion roundings between shares and assets.
/// @param marketParams The market to withdraw assets from.
/// @param assets The amount of assets to withdraw.
/// @param shares The amount of shares to burn.
/// @param onBehalf The address of the owner of the supply position.
/// @param receiver The address that will receive the withdrawn assets.
/// @return assetsWithdrawn The amount of assets withdrawn.
/// @return sharesWithdrawn The amount of shares burned.
function withdraw(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
address receiver
) external returns (uint256 assetsWithdrawn, uint256 sharesWithdrawn);
/// @notice Borrows `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
/// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
/// caller is guaranteed to borrow `assets` of tokens, but the possibility to mint a specific amount of shares is
/// given for full compatibility and precision.
/// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
/// @dev Borrowing a large amount can revert for overflow.
/// @dev Borrowing an amount of shares may lead to borrow fewer assets than expected due to slippage.
/// Consider using the `assets` parameter to avoid this.
/// @param marketParams The market to borrow assets from.
/// @param assets The amount of assets to borrow.
/// @param shares The amount of shares to mint.
/// @param onBehalf The address that will own the increased borrow position.
/// @param receiver The address that will receive the borrowed assets.
/// @return assetsBorrowed The amount of assets borrowed.
/// @return sharesBorrowed The amount of shares minted.
function borrow(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
address receiver
) external returns (uint256 assetsBorrowed, uint256 sharesBorrowed);
/// @notice Repays `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
/// `onMorphoRepay` function with the given `data`.
/// @dev Either `assets` or `shares` should be zero. To repay max, pass the `shares`'s balance of `onBehalf`.
/// @dev Repaying an amount corresponding to more shares than borrowed will revert for underflow.
/// @dev It is advised to use the `shares` input when repaying the full position to avoid reverts due to conversion
/// roundings between shares and assets.
/// @dev An attacker can front-run a repay with a small repay making the transaction revert for underflow.
/// @param marketParams The market to repay assets to.
/// @param assets The amount of assets to repay.
/// @param shares The amount of shares to burn.
/// @param onBehalf The address of the owner of the debt position.
/// @param data Arbitrary data to pass to the `onMorphoRepay` callback. Pass empty data if not needed.
/// @return assetsRepaid The amount of assets repaid.
/// @return sharesRepaid The amount of shares burned.
function repay(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
bytes memory data
) external returns (uint256 assetsRepaid, uint256 sharesRepaid);
/// @notice Supplies `assets` of collateral on behalf of `onBehalf`, optionally calling back the caller's
/// `onMorphoSupplyCollateral` function with the given `data`.
/// @dev Interest are not accrued since it's not required and it saves gas.
/// @dev Supplying a large amount can revert for overflow.
/// @param marketParams The market to supply collateral to.
/// @param assets The amount of collateral to supply.
/// @param onBehalf The address that will own the increased collateral position.
/// @param data Arbitrary data to pass to the `onMorphoSupplyCollateral` callback. Pass empty data if not needed.
function supplyCollateral(MarketParams memory marketParams, uint256 assets, address onBehalf, bytes memory data)
external;
/// @notice Withdraws `assets` of collateral on behalf of `onBehalf` and sends the assets to `receiver`.
/// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
/// @dev Withdrawing an amount corresponding to more collateral than supplied will revert for underflow.
/// @param marketParams The market to withdraw collateral from.
/// @param assets The amount of collateral to withdraw.
/// @param onBehalf The address of the owner of the collateral position.
/// @param receiver The address that will receive the collateral assets.
function withdrawCollateral(MarketParams memory marketParams, uint256 assets, address onBehalf, address receiver)
external;
/// @notice Liquidates the given `repaidShares` of debt asset or seize the given `seizedAssets` of collateral on the
/// given market `marketParams` of the given `borrower`'s position, optionally calling back the caller's
/// `onMorphoLiquidate` function with the given `data`.
/// @dev Either `seizedAssets` or `repaidShares` should be zero.
/// @dev Seizing more than the collateral balance will underflow and revert without any error message.
/// @dev Repaying more than the borrow balance will underflow and revert without any error message.
/// @dev An attacker can front-run a liquidation with a small repay making the transaction revert for underflow.
/// @param marketParams The market of the position.
/// @param borrower The owner of the position.
/// @param seizedAssets The amount of collateral to seize.
/// @param repaidShares The amount of shares to repay.
/// @param data Arbitrary data to pass to the `onMorphoLiquidate` callback. Pass empty data if not needed.
/// @return The amount of assets seized.
/// @return The amount of assets repaid.
function liquidate(
MarketParams memory marketParams,
address borrower,
uint256 seizedAssets,
uint256 repaidShares,
bytes memory data
) external returns (uint256, uint256);
/// @notice Executes a flash loan.
/// @dev Flash loans have access to the whole balance of the contract (the liquidity and deposited collateral of all
/// markets combined, plus donations).
/// @dev Warning: Not ERC-3156 compliant but compatibility is easily reached:
/// - `flashFee` is zero.
/// - `maxFlashLoan` is the token's balance of this contract.
/// - The receiver of `assets` is the caller.
/// @param token The token to flash loan.
/// @param assets The amount of assets to flash loan.
/// @param data Arbitrary data to pass to the `onMorphoFlashLoan` callback.
function flashLoan(address token, uint256 assets, bytes calldata data) external;
/// @notice Sets the authorization for `authorized` to manage `msg.sender`'s positions.
/// @param authorized The authorized address.
/// @param newIsAuthorized The new authorization status.
function setAuthorization(address authorized, bool newIsAuthorized) external;
/// @notice Sets the authorization for `authorization.authorized` to manage `authorization.authorizer`'s positions.
/// @dev Warning: Reverts if the signature has already been submitted.
/// @dev The signature is malleable, but it has no impact on the security here.
/// @dev The nonce is passed as argument to be able to revert with a different error message.
/// @param authorization The `Authorization` struct.
/// @param signature The signature.
function setAuthorizationWithSig(Authorization calldata authorization, Signature calldata signature) external;
/// @notice Accrues interest for the given market `marketParams`.
function accrueInterest(MarketParams memory marketParams) external;
/// @notice Returns the data stored on the different `slots`.
function extSloads(bytes32[] memory slots) external view returns (bytes32[] memory);
}
/// @dev This interface is inherited by Morpho so that function signatures are checked by the compiler.
/// @dev Consider using the IMorpho interface instead of this one.
interface IMorphoStaticTyping is IMorphoBase {
/// @notice The state of the position of `user` on the market corresponding to `id`.
/// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
/// accrual.
function position(Id id, address user)
external
view
returns (uint256 supplyShares, uint128 borrowShares, uint128 collateral);
/// @notice The state of the market corresponding to `id`.
/// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalSupplyShares` does not contain the accrued shares by `feeRecipient` since the last interest
/// accrual.
function market(Id id)
external
view
returns (
uint128 totalSupplyAssets,
uint128 totalSupplyShares,
uint128 totalBorrowAssets,
uint128 totalBorrowShares,
uint128 lastUpdate,
uint128 fee
);
/// @notice The market params corresponding to `id`.
/// @dev This mapping is not used in Morpho. It is there to enable reducing the cost associated to calldata on layer
/// 2s by creating a wrapper contract with functions that take `id` as input instead of `marketParams`.
function idToMarketParams(Id id)
external
view
returns (address loanToken, address collateralToken, address oracle, address irm, uint256 lltv);
}
/// @title IMorpho
/// @author Morpho Labs
/// @custom:contact security@morpho.org
/// @dev Use this interface for Morpho to have access to all the functions with the appropriate function signatures.
interface IMorpho is IMorphoBase {
/// @notice The state of the position of `user` on the market corresponding to `id`.
/// @dev Warning: For `feeRecipient`, `p.supplyShares` does not contain the accrued shares since the last interest
/// accrual.
function position(Id id, address user) external view returns (Position memory p);
/// @notice The state of the market corresponding to `id`.
/// @dev Warning: `m.totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `m.totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `m.totalSupplyShares` does not contain the accrued shares by `feeRecipient` since the last
/// interest accrual.
function market(Id id) external view returns (Market memory m);
/// @notice The market params corresponding to `id`.
/// @dev This mapping is not used in Morpho. It is there to enable reducing the cost associated to calldata on layer
/// 2s by creating a wrapper contract with functions that take `id` as input instead of `marketParams`.
function idToMarketParams(Id id) external view returns (MarketParams memory);
}
"
}
},
"settings": {
"remappings": [
"@ccip/=lib/boring-vault/lib/ccip/",
"@devtools-oapp-evm/=lib/boring-vault/lib/OAppAuth/lib/devtools/packages/oapp-evm/contracts/oapp/",
"@ds-test/=lib/boring-vault/lib/forge-std/lib/ds-test/src/",
"@forge-std/=lib/boring-vault/lib/forge-std/src/",
"@layerzerolabs/lz-evm-messagelib-v2/=lib/boring-vault/lib/OAppAuth/node_modules/@layerzerolabs/lz-evm-messagelib-v2/",
"@layerzerolabs/lz-evm-protocol-v2/=lib/boring-vault/lib/OAppAuth/lib/LayerZero-V2/packages/layerzero-v2/evm/protocol/",
"@layerzerolabs/oapp-evm/=lib/boring-vault/lib/OAppAuth/lib/devtools/packages/oapp-evm/",
"@lz-oapp-evm/=lib/boring-vault/lib/OAppAuth/lib/LayerZero-V2/packages/layerzero-v2/evm/oapp/contracts/oapp/",
"@oapp-auth/=lib/boring-vault/lib/OAppAuth/src/",
"@openzeppelin/=lib/boring-vault/lib/openzeppelin-contracts/",
"@solmate/=lib/boring-vault/lib/solmate/src/",
"LayerZero-V2/=lib/boring-vault/lib/OAppAuth/lib/",
"OAppAuth/=lib/boring-vault/lib/OAppAuth/",
"boring-vault/=lib/boring-vault/",
"ccip/=lib/boring-vault/lib/ccip/contracts/",
"ds-test/=lib/solmate/lib/ds-test/src/",
"erc4626-tests/=lib/boring-vault/lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"halmos-cheatcodes/=lib/boring-vault/lib/OAppAuth/lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts/=lib/boring-vault/lib/openzeppelin-contracts/",
"solady/=lib/solady/src/",
"solidity-bytes-utils/=lib/boring-vault/lib/OAppAuth/node_modules/solidity-bytes-utils/",
"solmate/=lib/solmate/src/",
"yearn-vaults/=lib/yearn-vaults/contracts/",
"@sbu/=lib/boring-vault/lib/OAppAuth/lib/solidity-bytes-utils/",
"morpho-blue/=lib/morpho-blue/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "shanghai",
"viaIR": false
}
}}
Submitted on: 2025-10-06 12:43:05
Comments
Log in to comment.
No comments yet.