MorphoVaultStrategyV2Mainnet_OEV_USDC

Description:

Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol": {
      "content": "// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     */
    bool private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Modifier to protect an initializer function from being invoked twice.
     */
    modifier initializer() {
        require(_initializing || !_initialized, "Initializable: contract is already initialized");

        bool isTopLevelCall = !_initializing;
        if (isTopLevelCall) {
            _initializing = true;
            _initialized = true;
        }

        _;

        if (isTopLevelCall) {
            _initializing = false;
        }
    }
}
"
    },
    "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
"
    },
    "@openzeppelin/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
"
    },
    "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}
"
    },
    "@openzeppelin/contracts/utils/Address.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/math/SafeMath.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}
"
    },
    "contracts/base/inheritance/ControllableInit.sol": {
      "content": "//SPDX-License-Identifier: Unlicense
pragma solidity 0.8.26;

import "./GovernableInit.sol";

// A clone of Governable supporting the Initializable interface and pattern
contract ControllableInit is GovernableInit {

  constructor() {
  }

  function initialize(address _storage) public override initializer {
    GovernableInit.initialize(_storage);
  }

  modifier onlyController() {
    require(Storage(_storage()).isController(msg.sender), "Not a controller");
    _;
  }

  modifier onlyControllerOrGovernance(){
    require((Storage(_storage()).isController(msg.sender) || Storage(_storage()).isGovernance(msg.sender)),
      "The caller must be controller or governance");
    _;
  }

  function controller() public view returns (address) {
    return Storage(_storage()).controller();
  }
}
"
    },
    "contracts/base/inheritance/GovernableInit.sol": {
      "content": "//SPDX-License-Identifier: Unlicense
pragma solidity 0.8.26;

import "../upgradability/ReentrancyGuardUpgradeable.sol";
import "./Storage.sol";

// A clone of Governable supporting the Initializable interface and pattern
contract GovernableInit is ReentrancyGuardUpgradeable {

  bytes32 internal constant _STORAGE_SLOT = 0xa7ec62784904ff31cbcc32d09932a58e7f1e4476e1d041995b37c917990b16dc;

  modifier onlyGovernance() {
    require(Storage(_storage()).isGovernance(msg.sender), "Not governance");
    _;
  }

  constructor() {
    assert(_STORAGE_SLOT == bytes32(uint256(keccak256("eip1967.governableInit.storage")) - 1));
  }

  function initialize(address _store) public virtual initializer {
    _setStorage(_store);
    ReentrancyGuardUpgradeable.initialize();
  }

  function _setStorage(address newStorage) private {
    bytes32 slot = _STORAGE_SLOT;
    // solhint-disable-next-line no-inline-assembly
    assembly {
      sstore(slot, newStorage)
    }
  }

  function setStorage(address _store) public onlyGovernance {
    require(_store != address(0), "new storage shouldn't be empty");
    _setStorage(_store);
  }

  function _storage() internal view returns (address str) {
    bytes32 slot = _STORAGE_SLOT;
    // solhint-disable-next-line no-inline-assembly
    assembly {
      str := sload(slot)
    }
  }

  function governance() public view returns (address) {
    return Storage(_storage()).governance();
  }
}
"
    },
    "contracts/base/inheritance/Storage.sol": {
      "content": "//SPDX-License-Identifier: Unlicense
pragma solidity 0.8.26;

contract Storage {

  address public governance;
  address public controller;

  constructor() {
    governance = msg.sender;
  }

  modifier onlyGovernance() {
    require(isGovernance(msg.sender), "Not governance");
    _;
  }

  function setGovernance(address _governance) public onlyGovernance {
    require(_governance != address(0), "new governance shouldn't be empty");
    governance = _governance;
  }

  function setController(address _controller) public onlyGovernance {
    require(_controller != address(0), "new controller shouldn't be empty");
    controller = _controller;
  }

  function isGovernance(address account) public view returns (bool) {
    return account == governance;
  }

  function isController(address account) public view returns (bool) {
    return account == controller;
  }
}
"
    },
    "contracts/base/interface/IController.sol": {
      "content": "// SPDX-License-Identifier: Unlicense
pragma solidity 0.8.26;


interface IController {

    // ========================= Events =========================

    event QueueProfitSharingChange(uint profitSharingNumerator, uint validAtTimestamp);
    event ConfirmProfitSharingChange(uint profitSharingNumerator);

    event QueueStrategistFeeChange(uint strategistFeeNumerator, uint validAtTimestamp);
    event ConfirmStrategistFeeChange(uint strategistFeeNumerator);

    event QueuePlatformFeeChange(uint platformFeeNumerator, uint validAtTimestamp);
    event ConfirmPlatformFeeChange(uint platformFeeNumerator);

    event QueueNextImplementationDelay(uint implementationDelay, uint validAtTimestamp);
    event ConfirmNextImplementationDelay(uint implementationDelay);

    event AddedStakingContract(address indexed stakingContract);
    event RemovedStakingContract(address indexed stakingContract);

    event SharePriceChangeLog(
        address indexed vault,
        address indexed strategy,
        uint256 oldSharePrice,
        uint256 newSharePrice,
        uint256 timestamp
    );

    // ==================== Functions ====================

    /**
     * An EOA can safely interact with the system no matter what. If you're using Metamask, you're using an EOA. Only
     * smart contracts may be affected by this grey list. This contract will not be able to ban any EOA from the system
     * even if an EOA is being added to the greyList, he/she will still be able to interact with the whole system as if
     * nothing happened. Only smart contracts will be affected by being added to the greyList. This grey list is only
     * used in VaultV3.sol, see the code there for reference
     */
    function greyList(address _target) external view returns (bool);

    function addressWhiteList(address _target) external view returns (bool);

    function codeWhiteList(address _target) external view returns (bool);

    function addToWhitelist(address _target) external;

    function addCodeToWhitelist(address _target) external;

    function store() external view returns (address);

    function governance() external view returns (address);

    function doHardWork(address _vault) external;

    function addHardWorker(address _worker) external;

    function removeHardWorker(address _worker) external;

    function salvage(address _token, uint256 amount) external;

    function salvageStrategy(address _strategy, address _token, uint256 amount) external;

    /**
     * @return The targeted profit token to convert all-non-compounding rewards to. Defaults to WETH.
     */
    function targetToken() external view returns (address);

    function setTargetToken(address _targetToken) external;

    function profitSharingReceiver() external view returns (address);

    function setProfitSharingReceiver(address _profitSharingReceiver) external;

    function protocolFeeReceiver() external view returns (address);

    function setProtocolFeeReceiver(address _protocolFeeReceiver) external;

    function rewardForwarder() external view returns (address);

    function setRewardForwarder(address _rewardForwarder) external;

    function universalLiquidator() external view returns (address);

    function setUniversalLiquidator(address _universalLiquidator) external;

    function dolomiteYieldFarmingRouter() external view returns (address);

    function setDolomiteYieldFarmingRouter(address _value) external;

    function nextImplementationDelay() external view returns (uint256);

    function profitSharingNumerator() external view returns (uint256);

    function strategistFeeNumerator() external view returns (uint256);

    function platformFeeNumerator() external view returns (uint256);

    function feeDenominator() external view returns (uint256);

    function setProfitSharingNumerator(uint _profitSharingNumerator) external;

    function confirmSetProfitSharingNumerator() external;

    function setStrategistFeeNumerator(uint _strategistFeeNumerator) external;

    function confirmSetStrategistFeeNumerator() external;

    function setPlatformFeeNumerator(uint _platformFeeNumerator) external;

    function confirmSetPlatformFeeNumerator() external;

    function setNextImplementationDelay(uint256 _nextImplementationDelay) external;

    function confirmNextImplementationDelay() external;

    function nextProfitSharingNumerator() external view returns (uint256);

    function nextProfitSharingNumeratorTimestamp() external view returns (uint256);

    function nextStrategistFeeNumerator() external view returns (uint256);

    function nextStrategistFeeNumeratorTimestamp() external view returns (uint256);

    function nextPlatformFeeNumerator() external view returns (uint256);

    function nextPlatformFeeNumeratorTimestamp() external view returns (uint256);

    function tempNextImplementationDelay() external view returns (uint256);

    function tempNextImplementationDelayTimestamp() external view returns (uint256);

    function hardWorkers(address _worker) external view returns (bool);
}
"
    },
    "contracts/base/interface/IIncentives.sol": {
      "content": "//SPDX-License-Identifier: Unlicense
pragma solidity 0.8.26;

interface IIncentives {
    function claim() external;
}"
    },
    "contracts/base/interface/IRewardForwarder.sol": {
      "content": "// SPDX-License-Identifier: Unlicense
pragma solidity 0.8.26;


/**
 * @dev A routing contract that is responsible for taking the harvested gains and routing them into FARM and additional
 *      buyback tokens for the corresponding strategy
 */
interface IRewardForwarder {

    function store() external view returns (address);

    function governance() external view returns (address);

    /**
     * @dev This function sends converted `_buybackTokens` to `msg.sender`. The returned amounts will match the
     *      `amounts` return value. The fee amounts are converted to the profit sharing token and sent to the proper
     *      addresses (profit sharing, strategist, and governance (platform)).
     *
     * @param _token            the token that will be compounded or sold into the profit sharing token for the Harvest
     *                          collective (users that stake iFARM)
     * @param _profitSharingFee the amount of `_token` that will be sold into the profit sharing token
     * @param _strategistFee    the amount of `_token` that will be sold into the profit sharing token for the
     *                          strategist
     * @param _platformFee      the amount of `_token` that will be sold into the profit sharing token for the Harvest
     *                          treasury
     * @param _buybackTokens    the output tokens that `_buyBackAmounts` should be swapped to (outputToken)
     * @param _buybackAmounts   the amounts of `_token` that will be bought into more `_buybackTokens` token
     * @return amounts The amounts that were purchased of _buybackTokens
     */
    function notifyFeeAndBuybackAmounts(
        address _token,
        uint256 _profitSharingFee,
        uint256 _strategistFee,
        uint256 _platformFee,
        address[] calldata _buybackTokens,
        uint256[] calldata _buybackAmounts
    ) external returns (uint[] memory amounts);

    /**
     * @dev This function converts the fee amounts to the profit sharing token and sends them to the proper addresses
     *      (profit sharing, strategist, and governance (platform)).
     *
     * @param _token            the token that will be compounded or sold into the profit sharing token for the Harvest
     *                          collective (users that stake iFARM)
     * @param _profitSharingFee the amount of `_token` that will be sold into the profit sharing token
     * @param _strategistFee    the amount of `_token` that will be sold into the profit sharing token for the
     *                          strategist
     * @param _platformFee      the amount of `_token` that will be sold into the profit sharing token for the Harvest
     *                          treasury
     */
    function notifyFee(
        address _token,
        uint256 _profitSharingFee,
        uint256 _strategistFee,
        uint256 _platformFee
    ) external;
}
"
    },
    "contracts/base/interface/IRewardPrePay.sol": {
      "content": "// SPDX-License-Identifier: Unlicense
pragma solidity 0.8.26;

interface IRewardPrePay {
    function MORPHO() external view returns (address);
    function initializeStrategy(address _strategy, uint256 _earned, uint256 _claimed) external;
    function strategyInitialized(address _strategy) external view returns (bool);
    function claimable(address _strategy) external view returns (uint256);
    function claim() external;
    function updateReward(address _strategy, uint256 _amount) external;
    function batchUpdateReward(address[] memory _strategies, uint256[] memory _amounts) external;
    function morphoClaim(
        address strategy,
        uint256 newAmount,
        address distr,
        bytes calldata txData
    ) external;
    function batchMerklClaim(
        address[] calldata strategies,
        uint256[] calldata newAmounts,
        address[] calldata distrs,
        bytes[] calldata txDatas
    ) external;
}
"
    },
    "contracts/base/interface/IUniversalLiquidator.sol": {
      "content": "// SPDX-License-Identifier: MIT\r
pragma solidity 0.8.26;\r
\r
interface IUniversalLiquidator {\r
    event Swap(\r
        address indexed sellToken,\r
        address indexed buyToken,\r
        address indexed receiver,\r
        address initiator,\r
        uint256 sellAmount,\r
        uint256 minBuyAmount\r
    );\r
\r
    function swap(\r
        address _sellToken,\r
        address _buyToken,\r
        uint256 _sellAmount,\r
        uint256 _minBuyAmount,\r
        address _receiver\r
    ) external returns (uint256);\r
}\r
"
    },
    "contracts/base/interface/merkl/IDistributor.sol": {
      "content": "//SPDX-License-Identifier: Unlicense
pragma solidity 0.8.26;

interface IDistributor {
    function toggleOperator(address user, address operator) external;
}"
    },
    "contracts/base/interface/morpho/IMorphoVault.sol": {
      "content": "//SPDX-License-Identifier: Unlicense
pragma solidity 0.8.26;

interface IMorphoVault {
    function deposit(uint256 assets, address receiver) external;
    function withdraw(uint256 assets, address receiver, address owner) external;
    function asset() external view returns (address);
    function balanceOf(address account) external view returns (uint256);
    function convertToAssets(uint256 shares) external view returns (uint256);
}"
    },
    "contracts/base/upgradability/BaseUpgradeableStrategy.sol": {
      "content": "//SPDX-License-Identifier: Unlicense
pragma solidity 0.8.26;

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "./BaseUpgradeableStrategyStorage.sol";
import "../inheritance/ControllableInit.sol";
import "../interface/IController.sol";
import "../interface/IRewardForwarder.sol";
import "../interface/IIncentives.sol";
import "../interface/merkl/IDistributor.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

contract BaseUpgradeableStrategy is Initializable, ControllableInit, BaseUpgradeableStrategyStorage {
  using SafeMath for uint256;
  using SafeERC20 for IERC20;

  event ProfitsNotCollected(bool sell, bool floor);
  event ProfitLogInReward(uint256 profitAmount, uint256 feeAmount, uint256 timestamp);
  event ProfitAndBuybackLog(uint256 profitAmount, uint256 feeAmount, uint256 timestamp);

  modifier restricted() {
    require(msg.sender == vault() || msg.sender == controller()
      || msg.sender == governance(),
      "The sender has to be the controller, governance, or vault");
    _;
  }

  // This is only used in `investAllUnderlying()`
  // The user can still freely withdraw from the strategy
  modifier onlyNotPausedInvesting() {
    require(!pausedInvesting(), "Action blocked as the strategy is in emergency state");
    _;
  }

  constructor() BaseUpgradeableStrategyStorage() {
  }

  function initialize(
    address _storage,
    address _underlying,
    address _vault,
    address _rewardPool,
    address _rewardToken,
    address _strategist
  ) public initializer {
    ControllableInit.initialize(
      _storage
    );
    _setUnderlying(_underlying);
    _setVault(_vault);
    _setRewardPool(_rewardPool);
    _setRewardToken(_rewardToken);
    _setStrategist(_strategist);
    _setSell(true);
    _setSellFloor(0);
    _setPausedInvesting(false);
  }

  /**
  * Schedules an upgrade for this vault's proxy.
  */
  function scheduleUpgrade(address impl) public onlyGovernance {
    _setNextImplementation(impl);
    _setNextImplementationTimestamp(block.timestamp.add(nextImplementationDelay()));
  }

  function _finalizeUpgrade() internal {
    _setNextImplementation(address(0));
    _setNextImplementationTimestamp(0);
  }

  function shouldUpgrade() external view returns (bool, address) {
    return (
      nextImplementationTimestamp() != 0
        && block.timestamp > nextImplementationTimestamp()
        && nextImplementation() != address(0),
      nextImplementation()
    );
  }

  function toggleMerklOperator(address merklClaim, address operator) external onlyGovernance {
    IDistributor(merklClaim).toggleOperator(address(this), operator);
  }

  function setIncentives(address _incentives) external onlyGovernance {
    _setIncentives(_incentives);
  }

  function _claimGeneralIncentives() internal {
    if (incentives() != address(0)) {
      IIncentives(incentives()).claim();
    }
  }

  // ========================= Internal & Private Functions =========================

  // ==================== Functionality ====================

  /**
    * @dev Same as `_notifyProfitAndBuybackInRewardToken` but does not perform a compounding buyback. Just takes fees
    *      instead.
    */
  function _notifyProfitInRewardToken(
      address _rewardToken,
      uint256 _rewardBalance
  ) internal {
      if (_rewardBalance > 100) {
          uint _feeDenominator = feeDenominator();
          uint256 strategistFee = _rewardBalance.mul(strategistFeeNumerator()).div(_feeDenominator);
          uint256 platformFee = _rewardBalance.mul(platformFeeNumerator()).div(_feeDenominator);
          uint256 profitSharingFee = _rewardBalance.mul(profitSharingNumerator()).div(_feeDenominator);

          address strategyFeeRecipient = strategist();
          address platformFeeRecipient = IController(controller()).governance();

          emit ProfitLogInReward(
              _rewardToken,
              _rewardBalance,
              profitSharingFee,
              block.timestamp
          );
          emit PlatformFeeLogInReward(
              platformFeeRecipient,
              _rewardToken,
              _rewardBalance,
              platformFee,
              block.timestamp
          );
          emit StrategistFeeLogInReward(
              strategyFeeRecipient,
              _rewardToken,
              _rewardBalance,
              strategistFee,
              block.timestamp
          );

          address rewardForwarder = IController(controller()).rewardForwarder();
          IERC20(_rewardToken).safeApprove(rewardForwarder, 0);
          IERC20(_rewardToken).safeApprove(rewardForwarder, _rewardBalance);

          // Distribute/send the fees
          IRewardForwarder(rewardForwarder).not

Tags:
ERC20, Proxy, Swap, Staking, Voting, Upgradeable, Factory|addr:0x0467e2a55e095304a06c2b7b6c228dc386484381|verified:true|block:23518187|tx:0x4429d2b7708fc7883fb7a8b8741dc793598ac11324f286141b856734949ef609|first_check:1759752620

Submitted on: 2025-10-06 14:10:21

Comments

Log in to comment.

No comments yet.