Vault

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/Vault.sol": {
      "content": "// SPDX-License-Identifier: LicenseRef-CICADA-Proprietary
// SPDX-FileCopyrightText: (c) 2024 Cicada Software, CICADA DMCC. All rights reserved.
pragma solidity ^0.8.29;

import {SafeERC20} from "@openzeppelin-contracts/token/ERC20/utils/SafeERC20.sol";
import {Address} from "@openzeppelin-contracts/utils/Address.sol";
import {IUniswapV2Router02} from "@uniswap-v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import {AccessControl} from "@openzeppelin-contracts/access/AccessControl.sol";
import {Math} from "@openzeppelin-contracts/utils/math/Math.sol";
import {IERC20} from "@openzeppelin-contracts/token/ERC20/IERC20.sol";

/**
 * @title Vault
 * @notice Manages funds and executes arbitrage operations on behalf of the DeGate arbitrage engine.
 * Handles asset approvals, delegates execution to the strategy, and enforces a USD TVL loss threshold to safeguard funds.
 * @dev The Vault interacts with a strategy contract to perform swaps and can be upgraded to integrate new strategies and DeFi protocols.
 */
contract Vault is AccessControl {
    using SafeERC20 for IERC20;
    using Address for address;

    struct VaultReserves {
        uint256 baseTokenBalance;
        uint256 baseTokenUsdValue;
        uint256 quoteTokenBalance;
        uint256 quoteTokenUsdValue;
        uint256 totalUsdValue;
    }

    // MANAGER_ROLE: Responsible for managing and upgrading the strategy contract.
    // Can grant MANAGER_ROLE and GATEWAY_EXECUTOR_ROLE roles.
    // Typically held by the platform staff via a multisignature wallet. This role allows
    // for the introduction of new methods and integrations with DeFi protocols.
    bytes32 public constant MANAGER_ROLE = keccak256("MANAGER_ROLE");

    // GATEWAY_EXECUTOR_ROLE: Held by the arbitrage engine gateway process, this EOA is responsible
    // for triggering arbitrage operations and covering the gas costs associated with these transactions.
    bytes32 public constant GATEWAY_EXECUTOR_ROLE = keccak256("GATEWAY_EXECUTOR_ROLE");

    // FINANCIER_ROLE: Held by the owner of the funds, which could be an externally owned
    // account (EOA) or a multisignature wallet. The holder of this role is responsible for
    // providing the funding for operations and has the exclusive ability to withdraw funds
    // from the vault.
    // Can grant FINANCIER_ROLE to other accounts.
    bytes32 public constant FINANCIER_ROLE = keccak256("FINANCIER_ROLE");

    // MAX_ALLOWED_LOSS_BPS represents the maximum allowed loss in basis points (bps).
    // A value of 1000 bps is equivalent to a 10% maximum loss allowed per single action
    uint256 public constant MAX_ALLOWED_SINGLE_LOSS_BPS = 100;
    uint256 public constant MAX_ALLOWED_CUM_LOSS_BPS = 1000;

    address public strategy;
    IERC20 public baseToken;
    IERC20 public quoteToken;
    address[] public reservesEvaluationPath;
    address[] public gatewayExecutors;
    IUniswapV2Router02 public router;
    string public constant version = "v0.1.3-flex";
    uint256 public allowedSingleLossBps;
    uint256 public allowedCumLossBps;
    uint256 public currentCumLossBps;
    uint256 public expectedGasBurn;
    bool public isFlex;

    // These events are emitted during the arbitrage execution process to track the state and results of operations.
    // allowing the arbitrage engine to index, fetch, and analyze the outcomes.
    // `PreExecState` captures the Vault's initial balances and USD TVL before execution.
    // `PostExecState` records the final balances and resulting USD TVL
    // `ExecResult` provides the net changes in balances and USD value.
    event PreExecState(VaultReserves);
    event PostExecState(VaultReserves);
    event ExecResult(int256 baseTokenBalanceChange, int256 quoteTokenBalanceChange, int256 totalUsdValueChange);

    event AllowedLossUpdated(uint256 allowedSingleLossBps, uint256 allowedCumLossBps);
    event StrategyUpdated(address previousStrategy, address newStrategy);
    event GatewayExecutorAdded(address executor);
    event GatewayExecutorRemoved(address executor);
    event ExpectedGasBurnUpdated(uint256 newExpectedGasBurn);

    /**
     * @dev Initializes the Vault with the provided parameters.
     * @param _baseToken Address of the base token (first token in the pair).
     * @param _quoteToken Address of the quote token (second token in the pair).
     * @param _reservesEvaluationPath Route to the USD stablecoin token (for USD valuation).
     * @param _router Address of the Uniswap V2 router (for price impact and USD value calculations).
     * @param _allowedSingleLossBps Allowed single-tx loss in 1/10000 basis points (modifiable by FINANCIER_ROLE).
     * @param _allowedCumLossBps Allowed cumulative loss loss in 1/10000 basis points (modifiable by FINANCIER_ROLE).
     * @param _strategy Address of the strategy contract (modifiable by MANAGER_ROLE).
     * @param _financier Address granted the FINANCIER_ROLE (responsible for funding operations).
     * @param _gatewayExecutors Addresses granted the GATEWAY_EXECUTOR_ROLE (able to initiate buy/sell operations).
     * @param _manager Address granted the MANAGER_ROLE (manages strategy upgrades).
     * @param _isFlex Flag to enable/disable flex mode
     */
    constructor(
        IERC20 _baseToken,
        IERC20 _quoteToken,
        address[] memory _reservesEvaluationPath,
        IUniswapV2Router02 _router,
        uint256 _allowedSingleLossBps,
        uint256 _allowedCumLossBps,
        uint256 _expectedGasBurn,
        address _strategy,
        address _financier,
        address[] memory _gatewayExecutors,
        address _manager,
        bool _isFlex
    ) {
        isFlex = _isFlex;
        _validateTokensAndRouter(address(_baseToken), address(_quoteToken), address(_router));
        baseToken = _baseToken;
        quoteToken = _quoteToken;
        router = _router;
        _validateEvaluationPath(_reservesEvaluationPath);
        reservesEvaluationPath = _reservesEvaluationPath;
        require(_allowedSingleLossBps <= MAX_ALLOWED_SINGLE_LOSS_BPS, "ALLOWED_SINGLE_LOSS_OVER_MAX");
        require(_allowedCumLossBps <= MAX_ALLOWED_CUM_LOSS_BPS, "ALLOWED_CUM_LOSS_OVER_MAX");
        allowedSingleLossBps = _allowedSingleLossBps;
        allowedCumLossBps = _allowedCumLossBps;
        strategy = _strategy;
        require(_expectedGasBurn > 200_000, "EXPECTED_GAS_BURN_TOO_LOW");
        expectedGasBurn = _expectedGasBurn;
        _setRoleAdmin(GATEWAY_EXECUTOR_ROLE, MANAGER_ROLE);
        _setRoleAdmin(MANAGER_ROLE, MANAGER_ROLE);
        _setRoleAdmin(FINANCIER_ROLE, FINANCIER_ROLE);
        _grantRole(FINANCIER_ROLE, _financier);
        for (uint256 i = 0; i < _gatewayExecutors.length; i++) {
            _addGatewayExecutor(_gatewayExecutors[i]);
        }
        _grantRole(MANAGER_ROLE, _manager);
    }

    function updateConfig(
        IERC20 _baseToken,
        IERC20 _quoteToken,
        address[] memory _reservesEvaluationPath,
        IUniswapV2Router02 _router,
        bool _isFlex
    ) external onlyRole(MANAGER_ROLE) {
        _validateTokensAndRouter(address(_baseToken), address(_quoteToken), address(_router));
        baseToken = _baseToken;
        quoteToken = _quoteToken;
        router = _router;
        _validateEvaluationPath(_reservesEvaluationPath);
        reservesEvaluationPath = _reservesEvaluationPath;
        isFlex = _isFlex;
    }

    receive() external payable {}

    /**
     * @notice Sets the expected gas burn value.
     * @param _expectedGasBurn The new expected gas burn value.
     */
    function setExpectedGasBurn(uint256 _expectedGasBurn) external onlyRole(MANAGER_ROLE) {
        require(_expectedGasBurn > 200_000, "EXPECTED_GAS_BURN_TOO_LOW");
        expectedGasBurn = _expectedGasBurn;
        emit ExpectedGasBurnUpdated(_expectedGasBurn);
    }

    /**
     * @notice Updates the allowed USD loss thresholds in basis points (bps).
     * @param _allowedSingleLossBps The new allowed single-operation loss in bps (1 bps = 0.01%).
     * @param _allowedCumLossBps The new allowed cumulative loss in bps (1 bps = 0.01%).
     *
     * Example: `setAllowedLoss(100);` sets the allowed loss to 1%.
     */
    function setAllowedLoss(uint256 _allowedSingleLossBps, uint256 _allowedCumLossBps)
        external
        onlyRole(FINANCIER_ROLE)
    {
        require(_allowedSingleLossBps <= MAX_ALLOWED_SINGLE_LOSS_BPS, "ALLOWED_SINGLE_LOSS_OVER_MAX");
        require(_allowedCumLossBps <= MAX_ALLOWED_CUM_LOSS_BPS, "ALLOWED_CUM_LOSS_OVER_MAX");
        allowedSingleLossBps = _allowedSingleLossBps;
        allowedCumLossBps = _allowedCumLossBps;
        currentCumLossBps = 0;
        emit AllowedLossUpdated(allowedSingleLossBps, allowedCumLossBps);
    }

    /**
     * @notice Updates the strategy contract used by the Vault.
     * @dev This function is used to update the strategy contract that the Vault interacts with for executing arbitrage operations.
     * Can only be called by an account with the MANAGER_ROLE (Typically held by the platform staff via a multisignature wallet)
     * @param _strategy The address of the new strategy contract.
     */
    function setStrategy(address _strategy) external onlyRole(MANAGER_ROLE) {
        require(_strategy != address(0), "STRATEGY_NOTSET");
        require(_strategy != strategy, "SAME_STRATEGY");
        // Revoke approvals from previous strategy for safety
        if (strategy != address(0)) {
            baseToken.forceApprove(strategy, 0);
            quoteToken.forceApprove(strategy, 0);
        }
        strategy = _strategy;
        emit StrategyUpdated(strategy, _strategy);
    }

    /**
     * @dev Adds a new gateway executor.
     * @param _executor The address of the executor to add.
     */
    function addGatewayExecutor(address _executor) external onlyRole(MANAGER_ROLE) {
        _addGatewayExecutor(_executor);
    }

    /**
     * @dev Removes an existing gateway executor.
     * @param _executor The address of the executor to remove.
     */
    function removeGatewayExecutor(address _executor) external onlyRole(MANAGER_ROLE) {
        _removeGatewayExecutor(_executor);
    }

    /**
     * @dev Ensures each gateway executor has at least _minWei wei on its baance.
     * @param _minWei The minimum balance units each executor should have.
     */
    function replenishExecutorsWei(uint256 _minWei) external onlyRole(MANAGER_ROLE) {
        _replenishExecutorsWei(_minWei);
    }

    /**
     * @dev Executes swap operations initiated by an external DeGate process with GATEWAY_EXECUTOR_ROLE.
     * Approves and flash-loans specified amounts of base and quote tokens from the Vault to the Strategy contract,
     * delegating control for execution. The Strategy completes the operation and returns the funds to the Vault.
     * While temporary USD losses due to slippage and DEX fees are expected, the modifier ensures losses
     * stay within the allowed threshold, mitigating potential mistakes.
     * @param _baseTokenAmount The amount of base tokens to approve and flash-loan to the Strategy.
     * @param _quoteTokenAmount The amount of quote tokens to approve and flash-loan to the Strategy.
     * @param _params Encoded function selector and parameters for the Strategy contract's execution.
     */
    function execute(uint256 _baseTokenAmount, uint256 _quoteTokenAmount, bytes calldata _params)
        external
        onlyRole(GATEWAY_EXECUTOR_ROLE)
    {
        baseToken.forceApprove(strategy, _baseTokenAmount);
        quoteToken.forceApprove(strategy, _quoteTokenAmount);
        VaultReserves memory vaultReservesBefore = getVaultReserves();

        emit PreExecState(vaultReservesBefore);

        strategy.functionCall(_params);

        VaultReserves memory vaultReservesAfter = getVaultReserves();

        if (!isFlex) {
            _trackAndEnforceLossLimits(vaultReservesBefore, vaultReservesAfter);
        }

        emit PostExecState(vaultReservesAfter);

        emit ExecResult(
            int256(vaultReservesAfter.baseTokenBalance) - int256(vaultReservesBefore.baseTokenBalance),
            int256(vaultReservesAfter.quoteTokenBalance) - int256(vaultReservesBefore.quoteTokenBalance),
            int256(vaultReservesAfter.totalUsdValue) - int256(vaultReservesBefore.totalUsdValue)
        );
        _replenishExecutorsWei(0);
    }

    /**
     * @notice Withdraws a specified amount of a given token from the Vault.
     * @dev Allows the funds' owner to withdraw baseToken, quoteToken, or recover any other tokens (e.g., mistakenly sent) from the Vault.
     * This function can only be called by an account with the FINANCIER_ROLE, representing the owner of the funds.
     * @param token The ERC20 token to withdraw. If the address is zero, withdraw native token (ETH).
     * @param amount The amount of the token to withdraw.
     */
    function withdraw(address token, uint256 amount) external onlyRole(FINANCIER_ROLE) {
        if (token == address(0)) {
            payable(msg.sender).transfer(amount);
        } else {
            IERC20(token).safeTransfer(msg.sender, amount);
        }
    }

    /**
     * @notice Calculates and returns the total USD value of the vault's reserves.
     * @dev This function retrieves the balances of two tokens (baseToken and quoteToken),
     *      converts their respective balances into USD value using a Uniswap-like router,
     *      and sums the USD values to return the total value of the reserves.
     *
     * @return usdValue The total USD value of the vault's reserves.
     */
    function getVaultReserves() public view returns (VaultReserves memory) {
        uint256 baseTokenBalance = baseToken.balanceOf(address(this));
        uint256 quoteTokenBalance = quoteToken.balanceOf(address(this));

        uint256 baseTokenUsdValue;
        uint256 quoteTokenUsdValue;

        if (!isFlex) {
            // If the route is not explicitly specified, evaluate baseToken by the direct route to quoteToken
            // and use theraw quote token balance as USD value
            if (reservesEvaluationPath.length == 0) {
                address[] memory fullEvaluationPath = new address[](2);
                fullEvaluationPath[0] = address(baseToken);
                fullEvaluationPath[1] = address(quoteToken);

                if (baseTokenBalance > 0) {
                    fullEvaluationPath[0] = address(baseToken);
                    baseTokenUsdValue = router.getAmountsOut(baseTokenBalance, fullEvaluationPath)[1];
                }

                quoteTokenUsdValue = quoteTokenBalance;
            } else {
                address[] memory fullEvaluationPath = new address[](reservesEvaluationPath.length + 1);
                for (uint256 i = 0; i < reservesEvaluationPath.length; i++) {
                    fullEvaluationPath[i + 1] = reservesEvaluationPath[i];
                }

                if (baseTokenBalance > 0) {
                    fullEvaluationPath[0] = address(baseToken);
                    baseTokenUsdValue = router.getAmountsOut(baseTokenBalance, fullEvaluationPath)[1];
                }

                if (quoteTokenBalance > 0) {
                    fullEvaluationPath[0] = address(quoteToken);
                    quoteTokenUsdValue = router.getAmountsOut(quoteTokenBalance, fullEvaluationPath)[1];
                }
            }
        }

        uint256 totalUsdValue = baseTokenUsdValue + quoteTokenUsdValue;

        VaultReserves memory reserves = VaultReserves({
            baseTokenBalance: baseTokenBalance,
            baseTokenUsdValue: baseTokenUsdValue,
            quoteTokenBalance: quoteTokenBalance,
            quoteTokenUsdValue: quoteTokenUsdValue,
            totalUsdValue: totalUsdValue
        });

        return reserves;
    }

    /**
     * @dev Adds a new gateway executor.
     * @param _executor The address of the executor to add.
     */
    function _addGatewayExecutor(address _executor) internal {
        require(_executor != address(0), "INVALID_EXECUTOR_ADDRESS");

        for (uint256 i = 0; i < gatewayExecutors.length; i++) {
            require(gatewayExecutors[i] != _executor, "EXECUTOR_ALREADY_EXISTS");
        }

        _grantRole(GATEWAY_EXECUTOR_ROLE, _executor);
        gatewayExecutors.push(_executor);
        emit GatewayExecutorAdded(_executor);
    }

    /**
     * @dev Removes an existing gateway executor.
     * @param _executor The address of the executor to remove.
     */
    function _removeGatewayExecutor(address _executor) internal {
        require(_executor != address(0), "INVALID_EXECUTOR_ADDRESS");
        _revokeRole(GATEWAY_EXECUTOR_ROLE, _executor);

        bool removed = false;

        // Remove executor from the array
        for (uint256 i = 0; i < gatewayExecutors.length; i++) {
            if (gatewayExecutors[i] == _executor) {
                gatewayExecutors[i] = gatewayExecutors[gatewayExecutors.length - 1];
                gatewayExecutors.pop();
                removed = true;
                break;
            }
        }

        require(removed, "EXECUTOR_NOT_FOUND");
        emit GatewayExecutorRemoved(_executor);
    }

    /**
     * @dev Ensures each gateway executor has at least _minWei.
     * @param _minWei The minimum balance each executor should have. If it's 0, it's auto-calculated
     */
    function _replenishExecutorsWei(uint256 _minWei) internal {
        if (_minWei == 0) {
            _minWei = expectedGasBurn * tx.gasprice;
        }
        for (uint256 i = 0; i < gatewayExecutors.length; i++) {
            address executor = gatewayExecutors[i];
            uint256 balance = executor.balance;
            if (balance < _minWei) {
                uint256 amountToSend = _minWei - balance;
                if (address(this).balance < amountToSend) {
                    // Exit the loop and function if the vault's balance is not enough
                    break;
                }
                payable(executor).transfer(amountToSend);
            }
        }
    }

    /**
     * @dev Tracks and enforces loss limits based on the change in reserves.
     * This function calculates the loss in USD value between the reserves before and after an operation.
     * It then converts this loss to basis points (bps) and ensures that the loss does not exceed the allowed single loss
     * and cumulative loss limits. If the loss exceeds these limits, the function reverts.
     *
     * @param reservesBefore The reserves before the operation.
     * @param reservesAfter The reserves after the operation.
     */
    function _trackAndEnforceLossLimits(VaultReserves memory reservesBefore, VaultReserves memory reservesAfter)
        internal
    {
        if (isFlex) return;
        if (reservesBefore.totalUsdValue > reservesAfter.totalUsdValue) {
            uint256 singleLossUsd = reservesBefore.totalUsdValue - reservesAfter.totalUsdValue;
            // Ensure singleLossBps is at least 1 if a loss occurred to prevent exploiting rounding errors
            uint256 singleLossBps = Math.max((singleLossUsd * 10000) / reservesBefore.totalUsdValue, 1);
            currentCumLossBps += singleLossBps;
            require(singleLossBps <= allowedSingleLossBps, "SINGLE_LOSS_EXCEEDS_ALLOWED");
            require(currentCumLossBps <= allowedCumLossBps, "CUM_LOSS_EXCEEDS_ALLOWED");
        }
    }

    function _validateTokensAndRouter(address _baseToken, address _quoteToken, address _router) internal pure {
        require(_baseToken != address(0), "BASE_TOKEN_NOT_SET");
        require(_quoteToken != address(0), "QUOTE_TOKEN_NOT_SET");
        require(_router != address(0), "ROUTER_NOT_SET");
        require(_baseToken != _quoteToken, "BASE_AND_QUOTE_EQUAL");
    }

    function _validateEvaluationPath(address[] memory _reservesEvaluationPath) internal view {
        if (isFlex) return;
        for (uint256 i = 0; i < _reservesEvaluationPath.length; i++) {
            require(_reservesEvaluationPath[i] != address(0), "EVALUATION_PATH_CONTAINS_ZERO");
            require(_reservesEvaluationPath[i] != address(baseToken), "EVALUATION_PATH_CONTAINS_BASE");
            require(_reservesEvaluationPath[i] != address(quoteToken), "EVALUATION_PATH_CONTAINS_QUOTE");
        }
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.2.0/token/ERC20/utils/SafeERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.2.0/utils/Address.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, bytes memory returndata) = recipient.call{value: amount}("");
        if (!success) {
            _revert(returndata);
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}
"
    },
    "dependencies/@uniswap-v2-periphery-1.1.0-beta.0/contracts/interfaces/IUniswapV2Router02.sol": {
      "content": "pragma solidity >=0.6.2;

import './IUniswapV2Router01.sol';

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}
"
    },
    "dependencies/@openzeppelin-contracts-5.2.0/access/AccessControl.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.2.0/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;\

Tags:
ERC20, ERC165, Multisig, Swap, Liquidity, Upgradeable, Multi-Signature, Factory|addr:0x42daca3e4df78c2459d15b6307eeca2996029788|verified:true|block:23391139|tx:0x4f7873adb107193de38980b7718110216f460d375dadaf728d7814893417722f|first_check:1758271277

Submitted on: 2025-09-19 10:41:18

Comments

Log in to comment.

No comments yet.