PEPETUAL

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

// SPDX-License-Identifier: MIT
pragma solidity >=0.4.16 >=0.6.2 >=0.8.4 ^0.8.19 ^0.8.20;

// lib/openzeppelin-contracts/contracts/utils/Context.sol

// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// lib/openzeppelin-contracts/contracts/utils/introspection/IERC165.sol

// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol

// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol

// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// lib/openzeppelin-contracts/contracts/interfaces/draft-IERC6093.sol

// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// lib/openzeppelin-contracts/contracts/interfaces/IERC165.sol

// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)

// lib/openzeppelin-contracts/contracts/interfaces/IERC20.sol

// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)

// lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol

// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// lib/openzeppelin-contracts/contracts/access/Ownable.sol

// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// lib/openzeppelin-contracts/contracts/utils/Pausable.sol

// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

// lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol

// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /// @inheritdoc IERC20
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /// @inheritdoc IERC20
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /// @inheritdoc IERC20
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// lib/openzeppelin-contracts/contracts/interfaces/IERC1363.sol

// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol

// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// contracts/PEPETUAL-claude.sol

interface IUniswapV2Factory {
    function createPair(address tokenA, address tokenB) external returns (address pair);
    function getPair(address tokenA, address tokenB) external view returns (address pair);
}

interface IUniswapV2Router02 {
    function factory() external view returns (address);
    function WETH() external view returns (address);
    function addLiquidityETH(
        address token,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    ) external payable returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);
    function getAmountsOut(uint256 amountIn, address[] calldata path)
        external
        view
        returns (uint256[] memory amounts);
    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;
}

interface IPondManager {
    function addToPond(uint256 pepeAmount) external;
    function updateHolderEligibility(address holder, uint256 newBalance) external;
    function paused() external view returns (bool);
}

contract PEPETUAL is ERC20, ReentrancyGuard, Pausable, Ownable {
    using SafeERC20 for IERC20;

    // ==================== Token Configuration ====================

    uint256 public constant MAX_TAX_RATE = 1000; // 10% maximum
    uint256 public taxRate = 969; // 9.69% default
    uint256 private constant TAX_DIVISOR = 10000;

    // Fee distribution (matching original FeeHandlerV5_PEPE)
    uint256 public constant POND_BPS = 6900; // 6.9% → Pond
    uint256 public constant PEPE_BURN_BPS = 690; // 0.69% → PEPE burn
    uint256 public constant SELF_BURN_BPS = 690; // 0.69% → PEPETUAL burn
    uint256 public constant REWARDS_BPS = 690; // 0.69% → Holder rewards
    uint256 public constant DEV_BPS = 390; // 0.39% → Dev (reduced for keeper)
    uint256 public constant KEEPER_BPS = 300; // 0.3% → Keeper gas refund (in ETH)
    uint256 public constant ART_BPS = 30; // 0.03% → Art
    uint256 public constant TOTAL_BPS = 9690; // Total must equal 9690

    // ==================== Router and Trading ====================

    IUniswapV2Router02 public immutable uniswapV2Router;
    address public immutable uniswapV2Pair;
    IERC20 public PEPE;
    address public immutable WETH;

    mapping(address => bool) public excludedFromFees;
    mapping(address => bool) public automatedMarketMakerPairs;
    mapping(address => bool) public isLimitExempt;

    // Transfer restrictions
    bool public walletToWalletTransfersDisabled = false; // Can be toggled by owner

    // Limits
    uint256 public maxTxAmount;
    uint256 public maxWalletAmount;
    bool public limitsInEffect = true;

    // Trading control
    bool public tradingEnabled = false;

    // ==================== Rewards System ====================

    struct RewardSnapshot {
        uint256 totalSupplySnapshot;
        uint256 pepePerToken;
        uint256 timestamp;
    }

    RewardSnapshot[] public rewardSnapshots;
    mapping(address => bool) public excludedFromRewards;

    uint256 private constant REWARD_MAGNITUDE = 1e18;
    uint256 public magnifiedRewardsPerShare;
    mapping(address => int256) private magnifiedRewardCorrections;
    mapping(address => uint256) public withdrawnRewards;

    uint256 public reservedPepeForRewards; // PEPE reserved for rewards
    uint256 public totalPepeDistributed;
    uint256 public totalPepeClaimed;
    uint256 public minBalanceForRewards = 100 * 10 ** 18; // 100 tokens minimum
    uint256 public rewardClaimCooldown = 3600; // 1 hour
    mapping(address => uint256) public lastRewardClaim;

    uint256 public pendingRewardsBuffer;
    address[] private rewardExclusionList;
    mapping(address => bool) private rewardExclusionTracked;

    // ==================== Pond Integration ====================

    IPondManager public pondManager;

    // ==================== Reentrancy Protection ====================

    bool private processingFees;

    // ==================== Slippage Protection ====================

    uint256 public maxSlippageBPS = 100; // 1% default (100 basis points)

    // ==================== Fee Processing ====================

    uint256 public feeProcessingThreshold = 10000; // 0.001% of supply in basis points (10000 = 0.001%)

    // ==================== Wallets ====================

    address public devWallet;
    address public artWallet;
    address public keeper;

    uint256 public pendingPondPepe;

    // ==================== Events ====================

    event TaxRateUpdated(uint256 oldRate, uint256 newRate);
    event RewardSnapshotTaken(
        uint256 indexed snapshotId, uint256 indexed pepePerToken, uint256 totalSupply
    );
    event RewardsClaimed(address indexed user, uint256 indexed amount);
    event FeesProcessed(uint256 indexed rewards, uint256 indexed pond, uint256 indexed operations);
    event PondManagerUpdated(address indexed oldManager, address indexed newManager);
    event RewardsExclusionUpdated(address indexed account, bool excluded);
    event ExternalPondPepeDeposited(address indexed sender, uint256 amount, uint256 forwarded);
    event ExternalRewardsPepeDeposited(address indexed sender, uint256 amount);
    event LimitExemptionUpdated(address indexed account, bool exempt);
    event TradingEnabled(uint256 timestamp);
    event KeeperRefunded(address indexed keeper, uint256 ethAmount);
    event KeeperUpdated(address indexed oldKeeper, address indexed newKeeper);

    // ==================== Modifiers ====================

    modifier onlyKeeperOrOwner() {
        require(msg.sender == keeper || msg.sender == owner(), "Not keeper or owner");
        _;
    }

    // ==================== Constructor ====================

    constructor(
        address router_,
        address pepe_,
        address devWallet_,
        address artWallet_,
        address pondManager_
    ) ERC20("PEPETUAL", "PEPETUAL") Ownable(msg.sender) {
        require(router_ != address(0), "Invalid router");
        require(pepe_ != address(0), "Invalid PEPE token");
        require(devWallet_ != address(0), "Invalid dev wallet");
        require(artWallet_ != address(0), "Invalid art wallet");
        // Allow temporary address for deployment
        // require(pondManager_ != address(0), "Invalid pond manager");

        uint256 totalSupply_ = 1_000_000_000 * 10 ** 18; // 1 billion tokens

        // Initialize router and pair
        uniswapV2Router = IUniswapV2Router02(router_);
        WETH = uniswapV2Router.WETH();
        PEPE = IERC20(pepe_);

        // Check if pair exists first
        address pairAddress =
            IUniswapV2Factory(uniswapV2Router.factory()).getPair(address(this), WETH);
        if (pairAddress == address(0)) {
            pairAddress =
                IUniswapV2Factory(uniswapV2Router.factory()).createPair(address(this), WETH);
        }

        uniswapV2Pair = pairAddress;

        automatedMarketMakerPairs[uniswapV2Pair] = true;

        // Set wallets
        devWallet = devWallet_;
        artWallet = artWallet_;
        keeper = msg.sender; // Deployer is initial keeper
        pondManager = IPondManager(pondManager_);

        // Set limits (2% of total supply)
        maxTxAmount = totalSupply_ * 200 / 10000;
        maxWalletAmount = totalSupply_ * 200 / 10000;

        // Exclude from fees and rewards
        excludedFromFees[owner()] = true;
        excludedFromFees[address(this)] = true;
        excludedFromFees[devWallet] = true;
        excludedFromFees[artWallet] = true;

        isLimitExempt[owner()] = true;
        isLimitExempt[address(this)] = true;

        excludedFromRewards[owner()] = true;
        excludedFromRewards[address(this)] = true;
        excludedFromRewards[uniswapV2Pair] = true;
        excludedFromRewards[address(0xdead)] = true;
        excludedFromRewards[devWallet] = true;
        excludedFromRewards[artWallet] = true;
        if (address(pondManager) != address(0)) {
            excludedFromRewards[address(pondManager)] = true;
        }

        _addRewardExclusion(owner());
        _addRewardExclusion(address(this));
        _addRewardExclusion(uniswapV2Pair);
        _addRewardExclusion(address(0xdead));
        _addRewardExclusion(devWallet);
        _addRewardExclusion(artWallet);
        if (address(pondManager) != address(0)) {
            _addRewardExclusion(address(pondManager));
        }

        // Approve router for swaps
        _approve(address(this), router_, type(uint256).max);

        // Mint tokens to owner
        _mint(owner(), totalSupply_);

        _syncRewardExclusion(owner(), true);
        _syncRewardExclusion(address(this), true);
        _syncRewardExclusion(uniswapV2Pair, true);
        _syncRewardExclusion(address(0xdead), true);
        _syncRewardExclusion(devWallet, true);
        _syncRewardExclusion(artWallet, true);
        if (address(pondManager) != address(0)) {
            _syncRewardExclusion(address(pondManager), true);
        }
    }

    // ==================== Core Transfer Logic ====================

    function _isTransferAllowed(address from, address to) internal view returns (bool) {
        // Always allow minting, burning, contract transfers
        if (from == address(0) || to == address(0) ||
            from == address(this) || to == address(this)) return true;

        // Always allow excluded addresses (owner, router, etc.)
        if (excludedFromFees[from] || excludedFromFees[to]) return true;

        // Always allow DEX pairs
        if (automatedMarketMakerPairs[from] || automatedMarketMakerPairs[to]) return true;

        // Block wallet-to-wallet if disabled
        return !walletToWalletTransfersDisabled;
    }

    function _update(address from, address to, uint256 amount) internal override {
        require(!paused(), "Token transfers paused");

        // Before trading enabled, only owner and excluded can transfer
        if (!tradingEnabled) {
            require(
                from == owner() || to == owner() ||
                excludedFromFees[from] || excludedFromFees[to],
                "Trading not enabled"
            );
        }

        // Check if transfer is allowed (prevent wallet-to-wallet to force DEX usage)
        bool isAllowedTransfer = _isTransferAllowed(from, to);
        require(isAllowedTransfer, "Wallet-to-wallet transfers disabled");

        // Apply limits
        if (
            limitsInEffect && from != owner() && to != owner() && !excludedFromFees[from]
                && !excludedFromFees[to] && !isLimitExempt[from] && !isLimitExempt[to]
        ) {
            amount = _applyLimitsAndProtections(from, to, amount);
        }

        (uint256 netAmount, uint256 feeAmount, bool takeFeeFromRecipient) =
            _calculateTax(from, to, amount);

        if (feeAmount > 0 && !takeFeeFromRecipient) {
            _executeTokenTransfer(from, address(this), feeAmount);
        }

        _executeTokenTransfer(from, to, netAmount);

        if (feeAmount > 0 && takeFeeFromRecipient) {
            _executeTokenTransfer(to, address(this), feeAmount);
        }

        // Update pond manager eligibility (skip if pond is paused to prevent transfer failures)
        if (address(pondManager) != address(0) && !pondManager.paused()) {
            if (from != address(0) && from != address(this)) {
                pondManager.updateHolderEligibility(from, balanceOf(from));
            }
            if (to != address(0) && to != address(this)) {
                pondManager.updateHolderEligibility(to, balanceOf(to));
            }
        }
    }

    function _applyLimitsAndProtections(address from, address to, uint256 amount)
        internal
        view
        returns (uint256)
    {
        if (isLimitExempt[from] || isLimitExempt[to]) {
            return amount;
        }

        // Check max transaction
        require(amount <= maxTxAmount, "Transfer amount exceeds max");

        // Check max wallet (for buys)
        if (automatedMarketMakerPairs[from] && to != address(uniswapV2Router)) {
            require(balanceOf(to) + amount <= maxWalletAmount, "Wallet would exceed max");
        }

        return amount;
    }

    function _calculateTax(address from, address to, uint256 amount)
        internal
        view
        returns (uint256 netAmount, uint256 feeAmount, bool takeFeeFromRecipient)
    {
        netAmount = amount;

        if (excludedFromFees[from]) {
            return (netAmount, 0, false);
        }

        bool isBuy = automatedMarketMakerPairs[from];
        bool isSell = automatedMarketMakerPairs[to];
        if (!isBuy && !isSell) {
            return (netAmount, 0, false);
        }

        // Always use flat tax rate
        uint256 currentTaxRate = taxRate;

        feeAmount = (amount * currentTaxRate) / TAX_DIVISOR;
        if (feeAmount == 0) {
            return (netAmount, 0, false);
        }

        takeFeeFromRecipient = isBuy;
        if (!takeFeeFromRecipient) {
            netAmount = amount - feeAmount;
        }

        return (netAmount, feeAmount, takeFeeFromRecipient);
    }

    // ==================== Token Transfer Execution ====================

    function _executeTokenTransfer(address from, address to, uint256 amount) internal {
        if (amount == 0) {
            return;
        }

        super._update(from, to, amount);
        _updateRewardCorrections(from, to, amount);
    }

    function _updateRewardCorrections(address from, address to, uint256 amount) internal {
        if (amount == 0) {
            return;
        }

        int256 magnifiedAmount = int256(magnifiedRewardsPerShare * amount);

        if (from == address(0)) {
            magnifiedRewardCorrections[to] -= magnifiedAmount;
        } else if (to == address(0)) {
            magnifiedRewardCorrections[from] += magnifiedAmount;
        } else {
            magnifiedRewardCorrections[from] += magnifiedAmount;
            magnifiedRewardCorrections[to] -= magnifiedAmount;
        }
    }

    function _addRewardExclusion(address account) internal {
        if (account == address(0) || rewardExclusionTracked[account]) {
            return;
        }

        rewardExclusionTracked[account] = true;
        rewardExclusionList.push(account);
    }

    function _syncRewardExclusion(address account, bool excluded) internal {
        if (account == address(0)) {
            return;
        }

        if (excluded) {
            _addRewardExclusion(account);
        }

        uint256 balance = balanceOf(account);
        int256 correction = int256(magnifiedRewardsPerShare * balance);
        magnifiedRewardCorrections[account] = -correction;
        withdrawnRewards[account] = 0;
    }

    // ==================== Fee Processing ====================

    function processFees() external nonReentrant onlyKeeperOrOwner {
        require(!processingFees, "Already processing");
        uint256 contractBalance = balanceOf(address(this));
        require(contractBalance > 0, "No fees to process");
        _processFees(contractBalance);
    }

    function shouldProcessFees() external view returns (bool) {
        uint256 contractBalance = balanceOf(address(this));
        uint256 threshold = (totalSupply() * feeProcessingThreshold) / 100000000;
        return contractBalance >= threshold;
    }

    function _processFees(uint256 amount) internal {
        // Reentrancy protection
        require(!processingFees, "Already processing fees");
        processingFees = true;

        // 1. First burn SELF_BURN portion (0.69%)
        uint256 selfBurnAmount = (amount * SELF_BURN_BPS) / TOTAL_BPS;
        if (selfBurnAmount > 0) {
            super._update(address(this), 0x000000000000000000000000000000000000dEaD, selfBurnAmount);
        }

        // 2. Calculate remaining amount after burn
        uint256 toSwap = amount - selfBurnAmount;

        if (toSwap == 0) {
            processingFees = false;
            return;
        }

        // 3. Calculate portions: keeper gets ETH, rest gets PEPE
        uint256 nonSelfBurnBPS = TOTAL_BPS - SELF_BURN_BPS; // 9000
        uint256 keeperTokens = (toSwap * KEEPER_BPS) / nonSelfBurnBPS;
        uint256 toSwapForPepe = toSwap - keeperTokens;

        // 4. Swap keeper portion to ETH
        uint256 ethForKeeper = 0;
        if (keeperTokens > 0) {
            ethForKeeper = _swapTokensForETH(keeperTokens);
        }

        // 5. Swap remaining to PEPE
        uint256 pepeReceived = 0;
        if (toSwapForPepe > 0) {
            pepeReceived = _swapTokensForPepe(toSwapForPepe);
        }

        if (pepeReceived == 0 && ethForKeeper == 0) {
            processingFees = false;
            return;
        }

        // 6. Distribute PEPE according to original ratios
        // Calculate each portion from received PEPE based on non-self-burn BPS
        uint256 pondPepe = (pepeReceived * POND_BPS) / nonSelfBurnBPS; // 6.9%
        uint256 burnPepe = (pepeReceived * PEPE_BURN_BPS) / nonSelfBurnBPS; // 0.69%
        uint256 rewardsPepe = (pepeReceived * REWARDS_BPS) / nonSelfBurnBPS; /

Tags:
ERC20, ERC165, Multisig, Burnable, Pausable, Swap, Liquidity, Upgradeable, Multi-Signature, Factory|addr:0xdc26505d78b65110841791db9db2f18a37522794|verified:true|block:23529555|tx:0xacf838a371114f4c2901718a3aaa412e4a1f5d36948f65e6a1e7048828158545|first_check:1759908657

Submitted on: 2025-10-08 09:30:57

Comments

Log in to comment.

No comments yet.