MiladyStrategy

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "milady.sol": {
      "content": "// SPDX-License-Identifier: MIT\r
pragma solidity ^0.8.20;\r
\r
import {Ownable} from "solady/src/auth/Ownable.sol";\r
import {ERC20} from "solady/src/tokens/ERC20.sol";\r
import {SafeTransferLib} from "solady/src/utils/SafeTransferLib.sol";\r
import {IPositionManager} from "@uniswap/v4-periphery/src/interfaces/IPositionManager.sol";\r
import {IAllowanceTransfer} from "permit2/src/interfaces/IAllowanceTransfer.sol";\r
import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";\r
import {IHooks} from "@uniswap/v4-core/src/interfaces/IHooks.sol";\r
import {Currency, CurrencyLibrary} from "@uniswap/v4-core/src/types/Currency.sol";\r
import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol";\r
import {PoolId, PoolIdLibrary} from "@uniswap/v4-core/src/types/PoolId.sol";\r
import {Actions} from "@uniswap/v4-periphery/src/libraries/Actions.sol";\r
import {TickMath} from "@uniswap/v4-core/src/libraries/TickMath.sol";\r
import {LiquidityAmounts} from "@uniswap/v4-periphery/src/libraries/LiquidityAmounts.sol";\r
\r
/// @title Milady Strategy - The Perpetual Milady Machine\r
/// @author TokenWorks (https://token.works/)\r
contract MiladyStrategy is ERC20, Ownable {\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™                ™™™™™™™™™™™                ™™™™™™™™™™™ */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™               ™™™™™™™™™™™™™              ™™™™™™™™™™  */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™              ™™™™™™™™™™™™™              ™™™™™™™™™™™  */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™             ™™™™™™™™™™™™™™            ™™™™™™™™™™™   */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™            ™™™™™™™™™™™™™™™            ™™™™™™™™™™™   */\r
    /*                ™™™™™™™™™™™            ™™™™™™™™™™™           ™™™™™™™™™™™™™™™           ™™™™™™™™™™™    */\r
    /*                ™™™™™™™™™™™             ™™™™™™™™™™          ™™™™™™™™™™™™™™™™™          ™™™™™™™™™™™    */\r
    /*                ™™™™™™™™™™™             ™™™™™™™™™™          ™™™™™™™™™™™™™™™™™          ™™™™™™™™™™     */\r
    /*                ™™™™™™™™™™™              ™™™™™™™™™™        ™™™™™™™™™™™™™™™™™™™        ™™™™™™™™™™™     */\r
    /*                ™™™™™™™™™™™              ™™™™™™™™™™™       ™™™™™™™™™ ™™™™™™™™™       ™™™™™™™™™™™      */\r
    /*                ™™™™™™™™™™™               ™™™™™™™™™™      ™™™™™™™™™™ ™™™™™™™™™™      ™™™™™™™™™™™      */\r
    /*                ™™™™™™™™™™™               ™™™™™™™™™™      ™™™™™™™™™   ™™™™™™™™™      ™™™™™™™™™™       */\r
    /*                ™™™™™™™™™™™                ™™™™™™™™™™    ™™™™™™™™™™    ™™™™™™™™™    ™™™™™™™™™™        */\r
    /*                ™™™™™™™™™™™                 ™™™™™™™™™™   ™™™™™™™™™     ™™™™™™™™™™  ™™™™™™™™™™™        */\r
    /*                ™™™™™™™™™™™                 ™™™™™™™™™™  ™™™™™™™™™™     ™™™™™™™™™™  ™™™™™™™™™™         */\r
    /*                ™™™™™™™™™™™                  ™™™™™™™™™™™™™™™™™™™™       ™™™™™™™™™™™™™™™™™™™™          */\r
    /*                ™™™™™™™™™™™                   ™™™™™™™™™™™™™™™™™™         ™™™™™™™™™™™™™™™™™™           */\r
    /*                ™™™™™™™™™™™                   ™™™™™™™™™™™™™™™™™™         ™™™™™™™™™™™™™™™™™™           */\r
    /*                ™™™™™™™™™™™                    ™™™™™™™™™™™™™™™™           ™™™™™™™™™™™™™™™™            */\r
    /*                ™™™™™™™™™™™                     ™™™™™™™™™™™™™™             ™™™™™™™™™™™™™™             */\r
    /*                ™™™™™™™™™™™                     ™™™™™™™™™™™™™™             ™™™™™™™™™™™™™™             */\r
    /*                ™™™™™™™™™™™                      ™™™™™™™™™™™™               ™™™™™™™™™™™™              */\r
\r
\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    /*                      CONSTANTS                      */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    \r
    IPositionManager public immutable positionManager;\r
    IAllowanceTransfer public immutable permit2;\r
    IPoolManager public immutable poolManager;\r
\r
    address public hookAddress;\r
    uint256 public constant MAX_SUPPLY = 1_000_000_000 * 1e18;\r
\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    /*                   STATE VARIABLES                   */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
\r
    bool public midSwap;\r
\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    /*                    CUSTOM EVENTS                    */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
\r
    event FeesDeposited(uint256 amount);\r
    event ETHWithdrawn(address indexed to, uint256 amount);\r
\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    /*                    CUSTOM ERRORS                    */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
\r
    error OnlyAutomation();\r
    error OnlyHook();\r
\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    /*                     MODIFIERS                       */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
\r
    modifier onlyAutomation() {\r
        if (msg.sender != owner()) revert OnlyAutomation();\r
        _;\r
    }\r
\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    /*                     CONSTRUCTOR                     */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    \r
    constructor(\r
        address _owner,\r
        address _positionManager,\r
        address _permit2,\r
        address _poolManager\r
    ) {\r
        positionManager = IPositionManager(_positionManager);\r
        permit2 = IAllowanceTransfer(_permit2);\r
        poolManager = IPoolManager(_poolManager);\r
\r
        _initializeOwner(_owner);\r
        _mint(address(this), MAX_SUPPLY);\r
    }\r
\r
    function name() public pure override returns (string memory) { \r
        return "MiladyStrategy"; \r
    }\r
\r
    function symbol() public pure override returns (string memory) { \r
        return "MLDSTR";     \r
    }\r
\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    /*                    ADMIN FUNCTIONS                  */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
\r
    /// @notice Loads initial liquidity into the pool\r
    /// @param _hook Address of the hook contract\r
    function loadLiquidity(address _hook) external payable onlyAutomation returns (uint256 tokenId) {\r
        hookAddress = _hook;\r
        address tokenA = address(this);\r
        uint160 sqrtPriceX96 = 792280926924313289846529216293289;\r
        int24 tickLower = -887200;\r
        int24 tickUpper = 184200;\r
\r
        // Approve Permit2 and Position Manager\r
        this.approve(address(permit2), type(uint256).max);\r
        permit2.approve(tokenA, address(positionManager), type(uint160).max, type(uint48).max);\r
        permit2.approve(tokenA, address(poolManager), type(uint160).max, type(uint48).max);\r
\r
        PoolKey memory pool = PoolKey({\r
            currency0: Currency.wrap(address(0)),\r
            currency1: Currency.wrap(address(tokenA)),\r
            fee: 0,\r
            tickSpacing: 200,\r
            hooks: IHooks(hookAddress)\r
        });\r
\r
        poolManager.initialize(pool, sqrtPriceX96);\r
\r
        uint128 liquidity = _calculateLiquidity(\r
            sqrtPriceX96,\r
            tickLower,\r
            tickUpper,\r
            0,\r
            balanceOf(address(this))\r
        );\r
\r
        uint256 nextId = positionManager.nextTokenId();\r
        bytes memory actions = abi.encodePacked(uint8(Actions.MINT_POSITION), uint8(Actions.SETTLE_PAIR));\r
        bytes memory hookData = new bytes(0);\r
\r
        bytes[] memory params = new bytes[](2);\r
        params[0] = abi.encode(\r
            pool,\r
            tickLower,\r
            tickUpper,\r
            liquidity,\r
            0,\r
            balanceOf(address(this)),\r
            address(this),\r
            hookData\r
        );\r
        params[1] = abi.encode(pool.currency0, pool.currency1);\r
\r
        try positionManager.modifyLiquidities(\r
            abi.encode(actions, params),\r
            block.timestamp + 120\r
        ) {\r
            tokenId = nextId;\r
            return tokenId;\r
        } catch (bytes memory reason) {\r
            assembly {\r
                revert(add(reason, 0x20), mload(reason))\r
            }\r
        }\r
    }\r
\r
    /// @notice Withdraw all ETH from contract to automation address\r
    function emergencyWithdrawETH() external onlyAutomation {\r
        uint256 amount = address(this).balance;\r
        SafeTransferLib.forceSafeTransferETH(owner(), amount);\r
    }\r
\r
    /// @notice Withdraw tokens from contract\r
    /// @param _token Token address to withdraw\r
    function emergencyWithdrawTokens(address _token) external onlyAutomation {\r
        uint256 balance = ERC20(_token).balanceOf(address(this));\r
        if (balance > 0) {\r
            SafeTransferLib.safeTransfer(_token, owner(), balance);\r
        }\r
    }\r
\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    /*                   HOOK FUNCTIONS                    */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
\r
    /// @notice Set midSwap flag (called by hook)\r
    function setMidSwap(bool value) external {\r
        if (msg.sender != hookAddress) revert OnlyHook();\r
        midSwap = value;\r
    }\r
\r
    /// @notice Deposit taxes from hook\r
    function depositTaxes() external payable {\r
        if (msg.sender != hookAddress && msg.sender != owner()) revert OnlyHook();\r
        emit FeesDeposited(msg.value);\r
    }\r
\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
    /*                  INTERNAL FUNCTIONS                 */\r
    /* ™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™ */\r
\r
    function _calculateLiquidity(\r
        uint160 sqrtPriceX96,\r
        int24 tickLower,\r
        int24 tickUpper,\r
        uint256 amount0Desired,\r
        uint256 amount1Desired\r
    ) private pure returns (uint128) {\r
        return LiquidityAmounts.getLiquidityForAmounts(\r
            sqrtPriceX96,\r
            TickMath.getSqrtPriceAtTick(tickLower),\r
            TickMath.getSqrtPriceAtTick(tickUpper),\r
            amount0Desired,\r
            amount1Desired\r
        );\r
    }\r
\r
    receive() external payable {}\r
}"
    },
    "@uniswap/v4-periphery/src/libraries/LiquidityAmounts.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {FullMath} from "@uniswap/v4-core/src/libraries/FullMath.sol";
import {FixedPoint96} from "@uniswap/v4-core/src/libraries/FixedPoint96.sol";
import {SafeCast} from "@uniswap/v4-core/src/libraries/SafeCast.sol";

/// @notice Provides functions for computing liquidity amounts from token amounts and prices
library LiquidityAmounts {
    using SafeCast for uint256;

    /// @notice Computes the amount of liquidity received for a given amount of token0 and price range
    /// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower))
    /// @param sqrtPriceAX96 A sqrt price representing the first tick boundary
    /// @param sqrtPriceBX96 A sqrt price representing the second tick boundary
    /// @param amount0 The amount0 being sent in
    /// @return liquidity The amount of returned liquidity
    function getLiquidityForAmount0(uint160 sqrtPriceAX96, uint160 sqrtPriceBX96, uint256 amount0)
        internal
        pure
        returns (uint128 liquidity)
    {
        unchecked {
            if (sqrtPriceAX96 > sqrtPriceBX96) (sqrtPriceAX96, sqrtPriceBX96) = (sqrtPriceBX96, sqrtPriceAX96);
            uint256 intermediate = FullMath.mulDiv(sqrtPriceAX96, sqrtPriceBX96, FixedPoint96.Q96);
            return FullMath.mulDiv(amount0, intermediate, sqrtPriceBX96 - sqrtPriceAX96).toUint128();
        }
    }

    /// @notice Computes the amount of liquidity received for a given amount of token1 and price range
    /// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)).
    /// @param sqrtPriceAX96 A sqrt price representing the first tick boundary
    /// @param sqrtPriceBX96 A sqrt price representing the second tick boundary
    /// @param amount1 The amount1 being sent in
    /// @return liquidity The amount of returned liquidity
    function getLiquidityForAmount1(uint160 sqrtPriceAX96, uint160 sqrtPriceBX96, uint256 amount1)
        internal
        pure
        returns (uint128 liquidity)
    {
        unchecked {
            if (sqrtPriceAX96 > sqrtPriceBX96) (sqrtPriceAX96, sqrtPriceBX96) = (sqrtPriceBX96, sqrtPriceAX96);
            return FullMath.mulDiv(amount1, FixedPoint96.Q96, sqrtPriceBX96 - sqrtPriceAX96).toUint128();
        }
    }

    /// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current
    /// pool prices and the prices at the tick boundaries
    /// @param sqrtPriceX96 A sqrt price representing the current pool prices
    /// @param sqrtPriceAX96 A sqrt price representing the first tick boundary
    /// @param sqrtPriceBX96 A sqrt price representing the second tick boundary
    /// @param amount0 The amount of token0 being sent in
    /// @param amount1 The amount of token1 being sent in
    /// @return liquidity The maximum amount of liquidity received
    function getLiquidityForAmounts(
        uint160 sqrtPriceX96,
        uint160 sqrtPriceAX96,
        uint160 sqrtPriceBX96,
        uint256 amount0,
        uint256 amount1
    ) internal pure returns (uint128 liquidity) {
        if (sqrtPriceAX96 > sqrtPriceBX96) (sqrtPriceAX96, sqrtPriceBX96) = (sqrtPriceBX96, sqrtPriceAX96);

        if (sqrtPriceX96 <= sqrtPriceAX96) {
            liquidity = getLiquidityForAmount0(sqrtPriceAX96, sqrtPriceBX96, amount0);
        } else if (sqrtPriceX96 < sqrtPriceBX96) {
            uint128 liquidity0 = getLiquidityForAmount0(sqrtPriceX96, sqrtPriceBX96, amount0);
            uint128 liquidity1 = getLiquidityForAmount1(sqrtPriceAX96, sqrtPriceX96, amount1);

            liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1;
        } else {
            liquidity = getLiquidityForAmount1(sqrtPriceAX96, sqrtPriceBX96, amount1);
        }
    }
}
"
    },
    "@uniswap/v4-core/src/libraries/TickMath.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {BitMath} from "./BitMath.sol";
import {CustomRevert} from "./CustomRevert.sol";

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
    using CustomRevert for bytes4;

    /// @notice Thrown when the tick passed to #getSqrtPriceAtTick is not between MIN_TICK and MAX_TICK
    error InvalidTick(int24 tick);
    /// @notice Thrown when the price passed to #getTickAtSqrtPrice does not correspond to a price between MIN_TICK and MAX_TICK
    error InvalidSqrtPrice(uint160 sqrtPriceX96);

    /// @dev The minimum tick that may be passed to #getSqrtPriceAtTick computed from log base 1.0001 of 2**-128
    /// @dev If ever MIN_TICK and MAX_TICK are not centered around 0, the absTick logic in getSqrtPriceAtTick cannot be used
    int24 internal constant MIN_TICK = -887272;
    /// @dev The maximum tick that may be passed to #getSqrtPriceAtTick computed from log base 1.0001 of 2**128
    /// @dev If ever MIN_TICK and MAX_TICK are not centered around 0, the absTick logic in getSqrtPriceAtTick cannot be used
    int24 internal constant MAX_TICK = 887272;

    /// @dev The minimum tick spacing value drawn from the range of type int16 that is greater than 0, i.e. min from the range [1, 32767]
    int24 internal constant MIN_TICK_SPACING = 1;
    /// @dev The maximum tick spacing value drawn from the range of type int16, i.e. max from the range [1, 32767]
    int24 internal constant MAX_TICK_SPACING = type(int16).max;

    /// @dev The minimum value that can be returned from #getSqrtPriceAtTick. Equivalent to getSqrtPriceAtTick(MIN_TICK)
    uint160 internal constant MIN_SQRT_PRICE = 4295128739;
    /// @dev The maximum value that can be returned from #getSqrtPriceAtTick. Equivalent to getSqrtPriceAtTick(MAX_TICK)
    uint160 internal constant MAX_SQRT_PRICE = 1461446703485210103287273052203988822378723970342;
    /// @dev A threshold used for optimized bounds check, equals `MAX_SQRT_PRICE - MIN_SQRT_PRICE - 1`
    uint160 internal constant MAX_SQRT_PRICE_MINUS_MIN_SQRT_PRICE_MINUS_ONE =
        1461446703485210103287273052203988822378723970342 - 4295128739 - 1;

    /// @notice Given a tickSpacing, compute the maximum usable tick
    function maxUsableTick(int24 tickSpacing) internal pure returns (int24) {
        unchecked {
            return (MAX_TICK / tickSpacing) * tickSpacing;
        }
    }

    /// @notice Given a tickSpacing, compute the minimum usable tick
    function minUsableTick(int24 tickSpacing) internal pure returns (int24) {
        unchecked {
            return (MIN_TICK / tickSpacing) * tickSpacing;
        }
    }

    /// @notice Calculates sqrt(1.0001^tick) * 2^96
    /// @dev Throws if |tick| > max tick
    /// @param tick The input tick for the above formula
    /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the price of the two assets (currency1/currency0)
    /// at the given tick
    function getSqrtPriceAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
        unchecked {
            uint256 absTick;
            assembly ("memory-safe") {
                tick := signextend(2, tick)
                // mask = 0 if tick >= 0 else -1 (all 1s)
                let mask := sar(255, tick)
                // if tick >= 0, |tick| = tick = 0 ^ tick
                // if tick < 0, |tick| = ~~|tick| = ~(-|tick| - 1) = ~(tick - 1) = (-1) ^ (tick - 1)
                // either way, |tick| = mask ^ (tick + mask)
                absTick := xor(mask, add(mask, tick))
            }

            if (absTick > uint256(int256(MAX_TICK))) InvalidTick.selector.revertWith(tick);

            // The tick is decomposed into bits, and for each bit with index i that is set, the product of 1/sqrt(1.0001^(2^i))
            // is calculated (using Q128.128). The constants used for this calculation are rounded to the nearest integer

            // Equivalent to:
            //     price = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
            //     or price = int(2**128 / sqrt(1.0001)) if (absTick & 0x1) else 1 << 128
            uint256 price;
            assembly ("memory-safe") {
                price := xor(shl(128, 1), mul(xor(shl(128, 1), 0xfffcb933bd6fad37aa2d162d1a594001), and(absTick, 0x1)))
            }
            if (absTick & 0x2 != 0) price = (price * 0xfff97272373d413259a46990580e213a) >> 128;
            if (absTick & 0x4 != 0) price = (price * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
            if (absTick & 0x8 != 0) price = (price * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
            if (absTick & 0x10 != 0) price = (price * 0xffcb9843d60f6159c9db58835c926644) >> 128;
            if (absTick & 0x20 != 0) price = (price * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
            if (absTick & 0x40 != 0) price = (price * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
            if (absTick & 0x80 != 0) price = (price * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
            if (absTick & 0x100 != 0) price = (price * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
            if (absTick & 0x200 != 0) price = (price * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
            if (absTick & 0x400 != 0) price = (price * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
            if (absTick & 0x800 != 0) price = (price * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
            if (absTick & 0x1000 != 0) price = (price * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
            if (absTick & 0x2000 != 0) price = (price * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
            if (absTick & 0x4000 != 0) price = (price * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
            if (absTick & 0x8000 != 0) price = (price * 0x31be135f97d08fd981231505542fcfa6) >> 128;
            if (absTick & 0x10000 != 0) price = (price * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
            if (absTick & 0x20000 != 0) price = (price * 0x5d6af8dedb81196699c329225ee604) >> 128;
            if (absTick & 0x40000 != 0) price = (price * 0x2216e584f5fa1ea926041bedfe98) >> 128;
            if (absTick & 0x80000 != 0) price = (price * 0x48a170391f7dc42444e8fa2) >> 128;

            assembly ("memory-safe") {
                // if (tick > 0) price = type(uint256).max / price;
                if sgt(tick, 0) { price := div(not(0), price) }

                // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                // we round up in the division so getTickAtSqrtPrice of the output price is always consistent
                // `sub(shl(32, 1), 1)` is `type(uint32).max`
                // `price + type(uint32).max` will not overflow because `price` fits in 192 bits
                sqrtPriceX96 := shr(32, add(price, sub(shl(32, 1), 1)))
            }
        }
    }

    /// @notice Calculates the greatest tick value such that getSqrtPriceAtTick(tick) <= sqrtPriceX96
    /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_PRICE, as MIN_SQRT_PRICE is the lowest value getSqrtPriceAtTick may
    /// ever return.
    /// @param sqrtPriceX96 The sqrt price for which to compute the tick as a Q64.96
    /// @return tick The greatest tick for which the getSqrtPriceAtTick(tick) is less than or equal to the input sqrtPriceX96
    function getTickAtSqrtPrice(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
        unchecked {
            // Equivalent: if (sqrtPriceX96 < MIN_SQRT_PRICE || sqrtPriceX96 >= MAX_SQRT_PRICE) revert InvalidSqrtPrice();
            // second inequality must be >= because the price can never reach the price at the max tick
            // if sqrtPriceX96 < MIN_SQRT_PRICE, the `sub` underflows and `gt` is true
            // if sqrtPriceX96 >= MAX_SQRT_PRICE, sqrtPriceX96 - MIN_SQRT_PRICE > MAX_SQRT_PRICE - MIN_SQRT_PRICE - 1
            if ((sqrtPriceX96 - MIN_SQRT_PRICE) > MAX_SQRT_PRICE_MINUS_MIN_SQRT_PRICE_MINUS_ONE) {
                InvalidSqrtPrice.selector.revertWith(sqrtPriceX96);
            }

            uint256 price = uint256(sqrtPriceX96) << 32;

            uint256 r = price;
            uint256 msb = BitMath.mostSignificantBit(r);

            if (msb >= 128) r = price >> (msb - 127);
            else r = price << (127 - msb);

            int256 log_2 = (int256(msb) - 128) << 64;

            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(63, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(62, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(61, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(60, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(59, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(58, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(57, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(56, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(55, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(54, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(53, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(52, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(51, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(50, f))
            }

            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // Q22.128 number

            // Magic number represents the ceiling of the maximum value of the error when approximating log_sqrt10001(x)
            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);

            // Magic number represents the minimum value of the error when approximating log_sqrt10001(x), when
            // sqrtPrice is from the range (2^-64, 2^64). This is safe as MIN_SQRT_PRICE is more than 2^-64. If MIN_SQRT_PRICE
            // is changed, this may need to be changed too
            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

            tick = tickLow == tickHi ? tickLow : getSqrtPriceAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
        }
    }
}
"
    },
    "@uniswap/v4-periphery/src/libraries/Actions.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @notice Library to define different pool actions.
/// @dev These are suggested common commands, however additional commands should be defined as required
/// Some of these actions are not supported in the Router contracts or Position Manager contracts, but are left as they may be helpful commands for other peripheral contracts.
library Actions {
    // pool actions
    // liquidity actions
    uint256 internal constant INCREASE_LIQUIDITY = 0x00;
    uint256 internal constant DECREASE_LIQUIDITY = 0x01;
    uint256 internal constant MINT_POSITION = 0x02;
    uint256 internal constant BURN_POSITION = 0x03;
    uint256 internal constant INCREASE_LIQUIDITY_FROM_DELTAS = 0x04;
    uint256 internal constant MINT_POSITION_FROM_DELTAS = 0x05;

    // swapping
    uint256 internal constant SWAP_EXACT_IN_SINGLE = 0x06;
    uint256 internal constant SWAP_EXACT_IN = 0x07;
    uint256 internal constant SWAP_EXACT_OUT_SINGLE = 0x08;
    uint256 internal constant SWAP_EXACT_OUT = 0x09;

    // donate
    // note this is not supported in the position manager or router
    uint256 internal constant DONATE = 0x0a;

    // closing deltas on the pool manager
    // settling
    uint256 internal constant SETTLE = 0x0b;
    uint256 internal constant SETTLE_ALL = 0x0c;
    uint256 internal constant SETTLE_PAIR = 0x0d;
    // taking
    uint256 internal constant TAKE = 0x0e;
    uint256 internal constant TAKE_ALL = 0x0f;
    uint256 internal constant TAKE_PORTION = 0x10;
    uint256 internal constant TAKE_PAIR = 0x11;

    uint256 internal constant CLOSE_CURRENCY = 0x12;
    uint256 internal constant CLEAR_OR_TAKE = 0x13;
    uint256 internal constant SWEEP = 0x14;

    uint256 internal constant WRAP = 0x15;
    uint256 internal constant UNWRAP = 0x16;

    // minting/burning 6909s to close deltas
    // note this is not supported in the position manager or router
    uint256 internal constant MINT_6909 = 0x17;
    uint256 internal constant BURN_6909 = 0x18;
}
"
    },
    "@uniswap/v4-core/src/types/PoolId.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {PoolKey} from "./PoolKey.sol";

type PoolId is bytes32;

/// @notice Library for computing the ID of a pool
library PoolIdLibrary {
    /// @notice Returns value equal to keccak256(abi.encode(poolKey))
    function toId(PoolKey memory poolKey) internal pure returns (PoolId poolId) {
        assembly ("memory-safe") {
            // 0xa0 represents the total size of the poolKey struct (5 slots of 32 bytes)
            poolId := keccak256(poolKey, 0xa0)
        }
    }
}
"
    },
    "@uniswap/v4-core/src/types/PoolKey.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {Currency} from "./Currency.sol";
import {IHooks} from "../interfaces/IHooks.sol";
import {PoolIdLibrary} from "./PoolId.sol";

using PoolIdLibrary for PoolKey global;

/// @notice Returns the key for identifying a pool
struct PoolKey {
    /// @notice The lower currency of the pool, sorted numerically
    Currency currency0;
    /// @notice The higher currency of the pool, sorted numerically
    Currency currency1;
    /// @notice The pool LP fee, capped at 1_000_000. If the highest bit is 1, the pool has a dynamic fee and must be exactly equal to 0x800000
    uint24 fee;
    /// @notice Ticks that involve positions must be a multiple of tick spacing
    int24 tickSpacing;
    /// @notice The hooks of the pool
    IHooks hooks;
}
"
    },
    "@uniswap/v4-core/src/types/Currency.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IERC20Minimal} from "../interfaces/external/IERC20Minimal.sol";
import {CustomRevert} from "../libraries/CustomRevert.sol";

type Currency is address;

using {greaterThan as >, lessThan as <, greaterThanOrEqualTo as >=, equals as ==} for Currency global;
using CurrencyLibrary for Currency global;

function equals(Currency currency, Currency other) pure returns (bool) {
    return Currency.unwrap(currency) == Currency.unwrap(other);
}

function greaterThan(Currency currency, Currency other) pure returns (bool) {
    return Currency.unwrap(currency) > Currency.unwrap(other);
}

function lessThan(Currency currency, Currency other) pure returns (bool) {
    return Currency.unwrap(currency) < Currency.unwrap(other);
}

function greaterThanOrEqualTo(Currency currency, Currency other) pure returns (bool) {
    return Currency.unwrap(currency) >= Currency.unwrap(other);
}

/// @title CurrencyLibrary
/// @dev This library allows for transferring and holding native tokens and ERC20 tokens
library CurrencyLibrary {
    /// @notice Additional context for ERC-7751 wrapped error when a native transfer fails
    error NativeTransferFailed();

    /// @notice Additional context for ERC-7751 wrapped error when an ERC20 transfer fails
    error ERC20TransferFailed();

    /// @notice A constant to represent the native currency
    Currency public constant ADDRESS_ZERO = Currency.wrap(address(0));

    function transfer(Currency currency, address to, uint256 amount) internal {
        // altered from https://github.com/transmissions11/solmate/blob/44a9963d4c78111f77caa0e65d677b8b46d6f2e6/src/utils/SafeTransferLib.sol
        // modified custom error selectors

        bool success;
        if (currency.isAddressZero()) {
            assembly ("memory-safe") {
                // Transfer the ETH and revert if it fails.
                success := call(gas(), to, amount, 0, 0, 0, 0)
            }
            // revert with NativeTransferFailed, containing the bubbled up error as an argument
            if (!success) {
                CustomRevert.bubbleUpAndRevertWith(to, bytes4(0), NativeTransferFailed.selector);
            }
        } else {
            assembly ("memory-safe") {
                // Get a pointer to some free memory.
                let fmp := mload(0x40)

                // Write the abi-encoded calldata into memory, beginning with the function selector.
                mstore(fmp, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                mstore(add(fmp, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                mstore(add(fmp, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

                success :=
                    and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                        // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                        // Counterintuitively, this call must be positioned second to the or() call in the
                        // surrounding and() call or else returndatasize() will be zero during the computation.
                        call(gas(), currency, 0, fmp, 68, 0, 32)
                    )

                // Now clean the memory we used
                mstore(fmp, 0) // 4 byte `selector` and 28 bytes of `to` were stored here
                mstore(add(fmp, 0x20), 0) // 4 bytes of `to` and 28 bytes of `amount` were stored here
                mstore(add(fmp, 0x40), 0) // 4 bytes of `amount` were stored here
            }
            // revert with ERC20TransferFailed, containing the bubbled up error as an argument
            if (!success) {
                CustomRevert.bubbleUpAndRevertWith(
                    Currency.unwrap(currency), IERC20Minimal.transfer.selector, ERC20TransferFailed.selector
                );
            }
        }
    }

    function balanceOfSelf(Currency currency) internal view returns (uint256) {
        if (currency.isAddressZero()) {
            return address(this).balance;
        } else {
            return IERC20Minimal(Currency.unwrap(currency)).balanceOf(address(this));
        }
    }

    function balanceOf(Currency currency, address owner) internal view returns (uint256) {
        if (currency.isAddressZero()) {
            return owner.balance;
        } else {
            return IERC20Minimal(Currency.unwrap(currency)).balanceOf(owner);
        }
    }

    function isAddressZero(Currency currency) internal pure returns (bool) {
        return Currency.unwrap(currency) == Currency.unwrap(ADDRESS_ZERO);
    }

    function toId(Currency currency) internal pure returns (uint256) {
        return uint160(Currency.unwrap(currency));
    }

    // If the upper 12 bytes are non-zero, they will be zero-ed out
    // Therefore, fromId() and toId() are not inverses of each other
    function fromId(uint256 id) internal pure returns (Currency) {
        return Currency.wrap(address(uint160(id)));
    }
}
"
    },
    "@uniswap/v4-core/src/interfaces/IHooks.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {PoolKey} from "../types/PoolKey.sol";
import {BalanceDelta} from "../types/BalanceDelta.sol";
import {IPoolManager} from "./IPoolManager.sol";
import {BeforeSwapDelta} from "../types/BeforeSwapDelta.sol";

/// @notice V4 decides whether to invoke specific hooks by inspecting the least significant bits
/// of the address that the hooks contract is deployed to.
/// For example, a hooks contract deployed to address: 0x0000000000000000000000000000000000002400
/// has the lowest bits '10 0100 0000 0000' which would cause the 'before initialize' and 'after add liquidity' hooks to be used.
/// See the Hooks library for the full spec.
/// @dev Should only be callable by the v4 PoolManager.
interface IHooks {
    /// @notice The hook called before the state of a pool is initialized
    /// @param sender The initial msg.sender for the initialize call
    /// @param key The key for the pool being initialized
    /// @param sqrtPriceX96 The sqrt(price) of the pool as a Q64.96
    /// @return bytes4 The function selector for the hook
    function beforeInitialize(address sender, PoolKey calldata key, uint160 sqrtPriceX96) external returns (bytes4);

    /// @notice The hook called after the state of a pool is initialized
    /// @param sender The initial msg.sender for the initialize call
    /// @param key The key for the pool being initialized
    /// @param sqrtPriceX96 The sqrt(price) of the pool as a Q64.96
    /// @param tick The current tick after the state of a pool is initialized
    /// @return bytes4 The function selector for the hook
    function afterInitialize(address sender, PoolKey calldata key, uint160 sqrtPriceX96, int24 tick)
        external
        returns (bytes4);

    /// @notice The hook called before liquidity is added
    /// @param sender The initial msg.sender for the add liquidity call
    /// @param key The key for the pool
    /// @param params The parameters for adding liquidity
    /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be passed on to the hook
    /// @return bytes4 The function selector for the hook
    function beforeAddLiquidity(
        address sender,
        PoolKey calldata key,
        IPoolManager.ModifyLiquidityParams calldata params,
        bytes calldata hookData
    ) external returns (bytes4);

    /// @notice The hook called after liquidity is added
    /// @param sender The initial msg.sender for the add liquidity call
    /// @param key The key for the pool
    /// @param params The parameters for adding liquidity
    /// @param delta The caller's balance delta after adding liquidity; the sum of principal delta, fees accrued, and hook delta
    /// @param feesAccrued The fees accrued since the last time fees were collected from this position
    /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be passed on to the hook
    /// @return bytes4 The function selector for the hook
    /// @return BalanceDelta The hook's delta in token0 and token1. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
    function afterAddLiquidity(
        address sender,
        PoolKey calldata key,
        IPoolManager.ModifyLiquidityParams calldata params,
        BalanceDelta delta,
        BalanceDelta feesAccrued,
        bytes calldata hookData
    ) external returns (bytes4, BalanceDelta);

    /// @notice The hook called before liquidity is removed
    /// @param sender The initial msg.sender for the remove liquidity call
    /// @param key The key for the pool
    /// @param params The parameters for removing liquidity
    /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    function beforeRemoveLiquidity(
        address sender,
        PoolKey calldata key,
        IPoolManager.ModifyLiquidityParams calldata params,
        bytes calldata hookData
    ) external returns (bytes4);

    /// @notice The hook called after liquidity is removed
    /// @param sender The initial msg.sender for the remove liquidity call
    /// @param key The key for the pool
    /// @param params The parameters for removing liquidity
    /// @param delta The caller's balance delta after removing liquidity; the sum of principal delta, fees accrued, and hook delta
    /// @param feesAccrued The fees accrued since the last time fees were collected from this position
    /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    /// @return BalanceDelta The hook's delta in token0 and token1. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
    function afterRemoveLiquidity(
        address sender,
        PoolKey calldata key,
        IPoolManager.ModifyLiquidityParams calldata params,
        BalanceDelta delta,
        BalanceDelta feesAccrued,
        bytes calldata hookData
    ) external returns (bytes4, BalanceDelta);

    /// @notice The hook called before a swap
    /// @param sender The initial msg.sender for the swap call
    /// @param key The key for the pool
    /// @param params The parameters for the swap
    /// @param hookData Arbitrary data handed into the PoolManager by the swapper to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    /// @return BeforeSwapDelta The hook's delta in specified and unspecified currencies. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
    /// @return uint24 Optionally override the lp fee, only used if three conditions are met: 1. the Pool has a dynamic fee, 2. the value's 2nd highest bit is set (23rd bit, 0x400000), and 3. the value is less than or equal to the maximum fee (1 million)
    function beforeSwap(
        address sender,
        PoolKey calldata key,
        IPoolManager.SwapParams calldata params,
        bytes calldata hookData
    ) external returns (bytes4, BeforeSwapDelta, uint24);

    /// @notice The hook called after a swap
    /// @param sender The initial msg.sender for the swap call
    /// @param key The key for the pool
    /// @param params The parameters for the swap
    /// @param delta The amount owed to the caller (positive) or owed to the pool (negative)
    /// @param hookData Arbitrary data handed into the PoolManager by the swapper to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    /// @return int128 The hook's delta in unspecified currency. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
    function afterSwap(
        address sender,
        PoolKey calldata key,
        IPoolManager.SwapParams calldata params,
        BalanceDelta delta,
        bytes calldata hookData
    ) external returns (bytes4, int128);

    /// @notice The hook called before donate
    /// @param sender The initial msg.sender for the donate call
    /// @param key The key for the pool
    /// @param amount0 The amount of token0 being donated
    /// @param amount1 The amount of token1 being donated
    /// @param hookData Arbitrary data handed into the PoolManager by the donor to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    function beforeDonate(
        address sender,
        PoolKey calldata key,
        uint256 amount0,
        uint256 amount1,
        bytes calldata hookData
    ) external returns (bytes4);

    /// @notice The hook called after donate
    /// @param sender The initial msg.sender for the donate call
    /// @param key The key for the pool
    /// @param amount0 The amount of token0 being donated
    /// @param amount1 The amount of token1 being donated
    /// @param hookData Arbitrary data handed into the PoolManager by the donor to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    function afterDonate(
        address sender,
        PoolKey calldata key,
        uint256 amount0,
        uint256 amount1,
        bytes calldata hookData
    ) external returns (bytes4);
}
"
    },
    "@uniswap/v4-core/src/interfaces/IPoolManager.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import {Currency} from "../types/Currency.sol";
import {PoolKey} from "../types/PoolKey.sol";
import {IHooks} from "./IHooks.sol";
import {IERC6909Claims} from "./external/IERC6909Claims.sol";
import {IProtocolFees} from "./IProtocolFees.sol";
import {BalanceDelta} from "../types/BalanceDelta.sol";
import {PoolId} from "../types/PoolId.sol";
import {IExtsload} from "./IExtsload.sol";
import {IExttload} from "./IExttload.sol";

/// @notice Interface for the PoolManager
interface IPoolManager is IProtocolFees, IERC6909Claims, IExtsload, IExttload {
    /// @notice Thrown when a currency is not netted out after the contract is unlocked
    error CurrencyNotSettled();

    /// @notice Thrown when trying to interact with a non-initialized pool
    error PoolNotInitialized();

    /// @notice Thrown when unlock is called, but the contract is already unlocked
    error AlreadyUnlocked();

    /// @notice Thrown when a function is called that requires the contract to be unlocked, but it is not
    error ManagerLocked();

    /// @notice Pools are limited to type(int16).max tickSpacing in #initialize, to prevent overflow
    error TickSpacingTooLarge(int24 tickSpacing);

    /// @notice Pools must have a positive non-zero tickSpacing passed to #initialize
    error TickSpacingTooSmall(int24 tickSpacing);

    /// @notice PoolKey must have currencies where address(currency0) < address(currency1)
    error CurrenciesOutOfOrderOrEqual(address currency0, address currency1);

    /// @notice Thrown when a call to updateDynamicLPFee is made by an address that is not the hook,
    /// or on a pool that does not have a dynamic swap fee.
    error UnauthorizedDynamicLPFeeUpdate();

    /// @notice Thrown when trying to swap amount of 0
    error SwapAmountCannotBeZero();

    ///@notice Thrown when native currency is passed to a non native settlement
    error NonzeroNativeValue();

    /// @notice Thrown when `clear` is called with an amount that is not exactly equal to the open currency delta.
    error MustClearExactPositiveDelta();

    /// @notice Emitted when a new pool is initialized
    /// @param id The abi encoded hash of the pool key struct for the new pool
    /// @param currency0 The first currency of the pool by address sort order
    /// @param currency1 The second currency of the pool by address sort order
    /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
    /// @param tickSpacing The minimum number of ticks between initialized ticks
    /// @param hooks The hooks contract address for the pool, or address(0) if none
    /// @param sqrtPriceX96 The price of the pool on initialization
    /// @param tick The initial tick of the pool corresponding to the initialized price
    event Initialize(
        PoolId indexed id,
        Currency indexed currency0,
        Currency indexed currency1,
        uint24 fee,
        int24 tickSpacing,
        IHooks hooks,
        uint160 sqrtPriceX96,
        int24 tick
    );

    /// @notice Emitted when a liquidity position is modified
    /// @param id The abi encoded hash of the pool key struct for the pool that was modified
    /// @param sender The address that modified the pool
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param liquidityDelta The amount of liquidity that was added or removed
    /// @param salt The extra data to make positions unique
    event ModifyLiquidity(
        PoolId indexed id, address indexed sender, int24 tickLower, int24 tickUpper, int256 liquidityDelta, bytes32 salt
    );

    /// @notice Emitted for swaps between currency0 and currency1
    /// @param id The abi encoded hash of the pool key struct for the pool that was modified
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param amount0 The delta of the currency0 balance of the pool
    /// @param amount1 The delta of the currency1 balance of the pool
    /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
    /// @param liquidity The liquidity of the pool after the swap
    /// @param tick The log base 1.0001 of the price of the pool after the swap
    /// @param fee The swap fee in hundredths of a bip
    event Swap(
        PoolId indexed id,
        address indexed sender,
        int128 amount0,
        int128 amount1,
        uint160 sqrtPriceX96,
        uint128 liquidity,
        int24 tick,
        uint24 fee
    );

    /// @notice Emitted for donations
    /// @param id The abi encoded hash of the pool key struct for the pool that was donated to
    /// @param sender The address that initiated the donate call
    /// @param amount0 The amount donated in currency0
    /// @param amount1 The amount donated in currency1
    event Donate(PoolId indexed id, address indexed sender, uint256 amount0, uint256 amount1);

    /// @notice All interactions on the contract that account deltas require unlocking. A caller that calls `unlock` must implement
    /// `IUnlockCallback(msg.sender).unlockCallback(data)`, where they interact with the remaining functions on this contract.
    /// @dev The only functions callable without an unlocking are `initialize` and `updateDynamicLPFee`
    /// @param data Any data to pass to the callback, via `IUnlockCallback(msg.sender).unlockCallback(data)`
    /// @return The data returned by the call to `IUnlockCallback(msg.sender).unlockCallback(data)`
    function unlock(bytes calldata data) external returns (bytes memory);

    /// @notice Initialize the state for a given pool ID
    /// @dev A swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee
    /// @param key The pool key for the pool to initialize
    /// @param sqrtPriceX96 The initial square root price
    /// @return tick The initial tick of the pool
    function initialize(PoolKey memory key, uint160 sqrtPriceX96) external returns (int24 tick);

    struct ModifyLiquidityParams {
        // the lower and upper tick of the position
        int24 tickLower;
        int24 tickUpper;
        // how to modify the liquidity
        int256 liquidityDelta;
        // a value to set if you want unique liquidity positions at the same range
        bytes32 salt;
    }

    /// @notice Modify the liquidity for the given pool
    /// @dev Poke by calling with a zero liquidityDelta
    /// @param key The pool to modify liquidity in
    /// @param params The parameters for modifying the liquidity
    /// @param hookData The data to pass through to the add/removeLiquidity hooks
    /// @return callerDelta The balance delta of the caller of modifyLiquidity. This is the total of both principal, fee deltas, and hook deltas if applicable
    /// @return feesAccrued The balance delta of the fees generated in the liquidity range. Returned for informational purposes
    /// @dev Note that feesAccrued can be artificially inflated by a malicious actor and integrators should be careful using the value
    /// For pools with a single liquidity position, actors can donate to themselves to inflate feeGrowthGlobal (and consequently feesAccrued)
    /// atomically donating and collecting fees in the same unlockCallback may make the inflated value more extreme
    function modifyLiquidity(PoolKey memory key, ModifyLiquidityParams memory params, bytes calldata hookData)
        external
        returns (BalanceDelta callerDelta, BalanceDelta feesAccrued);

    struct SwapParams {
        /// Whether to swap token0 for token1 or vice versa
        bool zeroForOne;
        /// The desired input amount if negative (exactIn), or the desired output amount if positive (exactOut)
        int256 amountSpecified;
        /// The sqrt price at which, if reached, the swap will stop executing
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swap against the given pool
    /// @param key The pool to swap in
    /// @param params The parameters for swapping
    /// @param hookData The data to pass through to the swap hooks
    /// @return swapDelta The balance delta of the address swapping
    /// @dev Swapping on low liquidity pools may cause unexpected swap amounts when liquidity available is less than amountSpecified.
    /// Additionally note that if interacting with hooks that have the BEFORE_SWAP_RETURNS_DELTA_FLAG or AFTER_SWAP_RETURNS_DELTA_FLAG
    /// the hook may alter the swap input/output. Integrators should perform checks on the returned swapDelta.
    function swap(PoolKey memory key, SwapParams memory params, bytes calldata hookData)
        external
        returns (BalanceDelta swapDelta);

    /// @notice Donate the given currency amounts to the in-range liquidity providers of a pool
    /// @dev Calls to donate can be frontrun adding just-in-time liquidity, with the aim of receiving a portion donated funds.
    /// Donors should keep this in mind when designing donation mechanisms.
    /// @dev This function donates to in-range LPs at slot0.tick. In certain edge-cases of the swap algorithm, the `sqrtPrice` of
    /// a pool can be at the lower boundary of tick `n`, but the `slot0.tick` of the pool is already `n - 1`. In this case a call to
    /// `donate` would donate to tick `n - 1` (slot0.tick) not tick `n` (getTickAtSqrtPrice(slot0.sqrtPriceX96)).
    /// Read the comments in `Pool.swap()` for more information about this.
    /// @param key The key of the pool to donate to
    /// @param amount0 The amount of currency0 to donate
    /// @param amount1 The amount of currency1 to donate
    /// @param hookData The data to pass through to the donate hooks
    /// @return BalanceDelta The delta of the caller after the donate
    function donate(PoolKey memory key, uint256 amount0, uint256 amount1, bytes calldata hookData)
        external
        returns (BalanceDelta);

    /// @notice Writes the current ERC20 balance of the specified currency to transient storage
    /// This is used to checkpoint balances for the manager and derive deltas for the caller.
    /// @dev This MUST be called before any ERC20 tokens are sent into the contract, but can be skipped
    /// for native tokens because the amount to settle is determined by the sent value.
    /// However, if an ERC20 token has been synced and not settled, and the caller instead wants to settle
    /// native funds, this function can be called with the native currency to then be able to settle the native currency
    function sync(Currency currency) external;

    /// @notice Called by the user to net out some value owed to the user
    /// @dev Will revert if the requested amount is not available, consider using `mint` instead
    /// @dev Can also be used as a mechanism for free flash loans
    /// @param currency The currency to withdraw from the pool manager
    /// @param to The address to withdraw to
    /// @param amount The amount of currency to withdraw
    function take(Currency currency, address to, uint256 amount) external;

    /// @notice Called by the user to pay what is owed
    /// @return paid The amount of currency settled
    function settle() external payable returns (uint256 paid);

    /// @notice Called by the user to pay on behalf of another address
    /// @param recipient The address to credit for the payment
    /// @return paid The amount of currency settled
    function settleFor(address recipient) external payable returns (uint256 paid);

    /// @notice WARNING - Any currency that is cleared, will be non-retrievable, and locked in the contract permanently.
    /// A call to clear will zero out a positive balance WITHOUT a corresponding transfer.
    /// @dev This could be used to clear a balance that is considered dust.
    /// Additionally, the amount must be the exact positive balance. This is to enforce that the caller is aware of the amount being cleared.
    function clear(Currency currency, uint256 amount) external;

    /// @notice Called by the user to move value into ERC6909 balance
    /// @param to The address to mint the tokens to
    /// @param id The currency address to mint to ERC6909s, as a uint256
    /// @param amount The amount of currency to mint
    /// @dev The id is converted to a uint160 to correspond to a currency address
    /// If the upper 12 bytes are not 0, they will be 0-ed out
    function mint(address to, uint256 id, uint256 amount) external;

    /// @notice Called by the user to move value from ERC6909 balance
    /// @param from The address to burn the tokens from
    /// @param id The currency address to burn from ERC6909s, as a uint256
    /// @param amount The amount of currency to burn
    /// @dev The id is converted to a uint160 to correspond to a currency address
    /// If the upper 12 bytes are not 0, they will be 0-ed out
    function burn(address from, uint256 id, uint256 amount) external;

    /// @notice Updates the pools lp fees for the a pool that has enabled dynamic lp fees.
    /// @dev A swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee
    /// @param key The key of the pool to update dynamic LP fees for
    /// @param newDynamicLPFee The new dynamic pool LP fee
    function updateDynamicLPFee(PoolKey memory key, uint24 newDynamicLPFee) external;
}
"
    },
    "permit2/src/interfaces/IAllowanceTransfer.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IEIP712} from "./IEIP712.sol";

/// @title AllowanceTransfer
/// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts
/// @dev Requires user's token approval on the Permit2 contract
interface IAllowanceTransfer is IEIP712 {
    /// @notice Thrown when an allowance on a token has expired.
    /// @param deadline The timestamp at which the allowed amount is no longer valid
    error AllowanceExpired(uint256 deadline);

    /// @notice Thrown when an allowance on a token has been depleted.
    /// @param amount The maximum amount allowed
    error InsufficientAllowance(uint256 amount);

    /// @notice Thrown when too many nonces are invalidated.
    error ExcessiveInvalidation();

    /// @notice Emits an event when the owner successfully invalidates an ordered nonce.
    event NonceInvalidation(
        address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce
    );

    /// @notice Emits an event when the owner successfully sets permissions on a token for the spender.
    event Approval(
        address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration
    );

    /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender.
    event Permit(
        address indexed owner,
        address indexed token,
        address indexed spender,
        uint160 amount,
        uint48 expiration,
        uint48 nonce
    );

    /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function.
    event Lockdown(address indexed owner, address token, address spender);

    /// @notice The permit data for a token
    struct PermitDetails {
        // ERC20 token address
        address token;
        // the maximum amount allowed to spend
        uint160 a

Tags:
ERC20, Multisig, Mintable, Burnable, Swap, Liquidity, Upgradeable, Multi-Signature, Factory|addr:0xbb2ac0b293ddf180b45c36a2ee1d15a5ac9786bf|verified:true|block:23530621|tx:0x3a8fd501f22f56b3376ef732588e2b397ffa577b7b38830d0bbec345f35f2f07|first_check:1759911174

Submitted on: 2025-10-08 10:12:54

Comments

Log in to comment.

No comments yet.