Description:
Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"starkware/solidity/verifier/cpu/CairoVerifierContract.sol": {
"content": "/*
Copyright 2019-2025 StarkWare Industries Ltd.
Licensed under the Apache License, Version 2.0 (the "License").
You may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.starkware.co/open-source-license/
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions
and limitations under the License.
*/
// SPDX-License-Identifier: Apache-2.0.
pragma solidity ^0.6.12;
abstract contract CairoVerifierContract {
function verifyProofExternal(
uint256[] calldata proofParams,
uint256[] calldata proof,
uint256[] calldata publicInput
) external virtual;
/*
Returns information that is related to the layout.
publicMemoryOffset is the offset of the public memory pages' information in the public input.
selectedBuiltins is a bit-map of builtins that are present in the layout.
*/
function getLayoutInfo()
external
pure
virtual
returns (uint256 publicMemoryOffset, uint256 selectedBuiltins);
uint256 internal constant OUTPUT_BUILTIN_BIT = 0;
uint256 internal constant PEDERSEN_BUILTIN_BIT = 1;
uint256 internal constant RANGE_CHECK_BUILTIN_BIT = 2;
uint256 internal constant ECDSA_BUILTIN_BIT = 3;
uint256 internal constant BITWISE_BUILTIN_BIT = 4;
uint256 internal constant EC_OP_BUILTIN_BIT = 5;
uint256 internal constant KECCAK_BUILTIN_BIT = 6;
uint256 internal constant POSEIDON_BUILTIN_BIT = 7;
}
"
},
"starkware/solidity/verifier/cpu/layout5/CpuConstraintPoly.sol": {
"content": "/*
Copyright 2019-2025 StarkWare Industries Ltd.
Licensed under the Apache License, Version 2.0 (the "License").
You may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.starkware.co/open-source-license/
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions
and limitations under the License.
*/
// ---------- The following code was auto-generated. PLEASE DO NOT EDIT. ----------
// SPDX-License-Identifier: Apache-2.0.
pragma solidity ^0.6.12;
contract CpuConstraintPoly {
// The Memory map during the execution of this contract is as follows:
// [0x0, 0x20) - periodic_column/pedersen/points/x.
// [0x20, 0x40) - periodic_column/pedersen/points/y.
// [0x40, 0x60) - periodic_column/ecdsa/generator_points/x.
// [0x60, 0x80) - periodic_column/ecdsa/generator_points/y.
// [0x80, 0xa0) - trace_length.
// [0xa0, 0xc0) - offset_size.
// [0xc0, 0xe0) - half_offset_size.
// [0xe0, 0x100) - initial_ap.
// [0x100, 0x120) - initial_pc.
// [0x120, 0x140) - final_ap.
// [0x140, 0x160) - final_pc.
// [0x160, 0x180) - memory/multi_column_perm/perm/interaction_elm.
// [0x180, 0x1a0) - memory/multi_column_perm/hash_interaction_elm0.
// [0x1a0, 0x1c0) - memory/multi_column_perm/perm/public_memory_prod.
// [0x1c0, 0x1e0) - range_check16/perm/interaction_elm.
// [0x1e0, 0x200) - range_check16/perm/public_memory_prod.
// [0x200, 0x220) - range_check_min.
// [0x220, 0x240) - range_check_max.
// [0x240, 0x260) - diluted_check/permutation/interaction_elm.
// [0x260, 0x280) - diluted_check/permutation/public_memory_prod.
// [0x280, 0x2a0) - diluted_check/first_elm.
// [0x2a0, 0x2c0) - diluted_check/interaction_z.
// [0x2c0, 0x2e0) - diluted_check/interaction_alpha.
// [0x2e0, 0x300) - diluted_check/final_cum_val.
// [0x300, 0x320) - pedersen/shift_point.x.
// [0x320, 0x340) - pedersen/shift_point.y.
// [0x340, 0x360) - initial_pedersen_addr.
// [0x360, 0x380) - initial_range_check_addr.
// [0x380, 0x3a0) - ecdsa/sig_config.alpha.
// [0x3a0, 0x3c0) - ecdsa/sig_config.shift_point.x.
// [0x3c0, 0x3e0) - ecdsa/sig_config.shift_point.y.
// [0x3e0, 0x400) - ecdsa/sig_config.beta.
// [0x400, 0x420) - initial_ecdsa_addr.
// [0x420, 0x440) - initial_bitwise_addr.
// [0x440, 0x460) - trace_generator.
// [0x460, 0x480) - oods_point.
// [0x480, 0x540) - interaction_elements.
// [0x540, 0x560) - composition_alpha.
// [0x560, 0x2420) - oods_values.
// ----------------------- end of input data - -------------------------
// [0x2420, 0x2440) - intermediate_value/cpu/decode/opcode_range_check/bit_0.
// [0x2440, 0x2460) - intermediate_value/cpu/decode/opcode_range_check/bit_2.
// [0x2460, 0x2480) - intermediate_value/cpu/decode/opcode_range_check/bit_4.
// [0x2480, 0x24a0) - intermediate_value/cpu/decode/opcode_range_check/bit_3.
// [0x24a0, 0x24c0) - intermediate_value/cpu/decode/flag_op1_base_op0_0.
// [0x24c0, 0x24e0) - intermediate_value/cpu/decode/opcode_range_check/bit_5.
// [0x24e0, 0x2500) - intermediate_value/cpu/decode/opcode_range_check/bit_6.
// [0x2500, 0x2520) - intermediate_value/cpu/decode/opcode_range_check/bit_9.
// [0x2520, 0x2540) - intermediate_value/cpu/decode/flag_res_op1_0.
// [0x2540, 0x2560) - intermediate_value/cpu/decode/opcode_range_check/bit_7.
// [0x2560, 0x2580) - intermediate_value/cpu/decode/opcode_range_check/bit_8.
// [0x2580, 0x25a0) - intermediate_value/cpu/decode/flag_pc_update_regular_0.
// [0x25a0, 0x25c0) - intermediate_value/cpu/decode/opcode_range_check/bit_12.
// [0x25c0, 0x25e0) - intermediate_value/cpu/decode/opcode_range_check/bit_13.
// [0x25e0, 0x2600) - intermediate_value/cpu/decode/fp_update_regular_0.
// [0x2600, 0x2620) - intermediate_value/cpu/decode/opcode_range_check/bit_1.
// [0x2620, 0x2640) - intermediate_value/npc_reg_0.
// [0x2640, 0x2660) - intermediate_value/cpu/decode/opcode_range_check/bit_10.
// [0x2660, 0x2680) - intermediate_value/cpu/decode/opcode_range_check/bit_11.
// [0x2680, 0x26a0) - intermediate_value/cpu/decode/opcode_range_check/bit_14.
// [0x26a0, 0x26c0) - intermediate_value/memory/address_diff_0.
// [0x26c0, 0x26e0) - intermediate_value/range_check16/diff_0.
// [0x26e0, 0x2700) - intermediate_value/pedersen/hash0/ec_subset_sum/bit_0.
// [0x2700, 0x2720) - intermediate_value/pedersen/hash0/ec_subset_sum/bit_neg_0.
// [0x2720, 0x2740) - intermediate_value/pedersen/hash1/ec_subset_sum/bit_0.
// [0x2740, 0x2760) - intermediate_value/pedersen/hash1/ec_subset_sum/bit_neg_0.
// [0x2760, 0x2780) - intermediate_value/pedersen/hash2/ec_subset_sum/bit_0.
// [0x2780, 0x27a0) - intermediate_value/pedersen/hash2/ec_subset_sum/bit_neg_0.
// [0x27a0, 0x27c0) - intermediate_value/pedersen/hash3/ec_subset_sum/bit_0.
// [0x27c0, 0x27e0) - intermediate_value/pedersen/hash3/ec_subset_sum/bit_neg_0.
// [0x27e0, 0x2800) - intermediate_value/range_check_builtin/value0_0.
// [0x2800, 0x2820) - intermediate_value/range_check_builtin/value1_0.
// [0x2820, 0x2840) - intermediate_value/range_check_builtin/value2_0.
// [0x2840, 0x2860) - intermediate_value/range_check_builtin/value3_0.
// [0x2860, 0x2880) - intermediate_value/range_check_builtin/value4_0.
// [0x2880, 0x28a0) - intermediate_value/range_check_builtin/value5_0.
// [0x28a0, 0x28c0) - intermediate_value/range_check_builtin/value6_0.
// [0x28c0, 0x28e0) - intermediate_value/range_check_builtin/value7_0.
// [0x28e0, 0x2900) - intermediate_value/ecdsa/signature0/doubling_key/x_squared.
// [0x2900, 0x2920) - intermediate_value/ecdsa/signature0/exponentiate_generator/bit_0.
// [0x2920, 0x2940) - intermediate_value/ecdsa/signature0/exponentiate_generator/bit_neg_0.
// [0x2940, 0x2960) - intermediate_value/ecdsa/signature0/exponentiate_key/bit_0.
// [0x2960, 0x2980) - intermediate_value/ecdsa/signature0/exponentiate_key/bit_neg_0.
// [0x2980, 0x29a0) - intermediate_value/bitwise/sum_var_0_0.
// [0x29a0, 0x29c0) - intermediate_value/bitwise/sum_var_8_0.
// [0x29c0, 0x2ec0) - expmods.
// [0x2ec0, 0x3280) - domains.
// [0x3280, 0x35a0) - denominator_invs.
// [0x35a0, 0x38c0) - denominators.
// [0x38c0, 0x3980) - expmod_context.
fallback() external {
uint256 res;
assembly {
let PRIME := 0x800000000000011000000000000000000000000000000000000000000000001
// Copy input from calldata to memory.
calldatacopy(0x0, 0x0, /*Input data size*/ 0x2420)
let point := /*oods_point*/ mload(0x460)
function expmod(base, exponent, modulus) -> result {
let p := /*expmod_context*/ 0x38c0
mstore(p, 0x20) // Length of Base.
mstore(add(p, 0x20), 0x20) // Length of Exponent.
mstore(add(p, 0x40), 0x20) // Length of Modulus.
mstore(add(p, 0x60), base) // Base.
mstore(add(p, 0x80), exponent) // Exponent.
mstore(add(p, 0xa0), modulus) // Modulus.
// Call modexp precompile.
if iszero(staticcall(not(0), 0x05, p, 0xc0, p, 0x20)) {
revert(0, 0)
}
result := mload(p)
}
{
// Prepare expmods for denominators and numerators.
// expmods[0] = point^(trace_length / 8192).
mstore(0x29c0, expmod(point, div(/*trace_length*/ mload(0x80), 8192), PRIME))
// expmods[1] = point^(trace_length / 4096).
mstore(0x29e0, mulmod(
/*point^(trace_length / 8192)*/ mload(0x29c0),
/*point^(trace_length / 8192)*/ mload(0x29c0),
PRIME))
// expmods[2] = point^(trace_length / 1024).
mstore(0x2a00, expmod(point, div(/*trace_length*/ mload(0x80), 1024), PRIME))
// expmods[3] = point^(trace_length / 512).
mstore(0x2a20, mulmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
/*point^(trace_length / 1024)*/ mload(0x2a00),
PRIME))
// expmods[4] = point^(trace_length / 256).
mstore(0x2a40, mulmod(
/*point^(trace_length / 512)*/ mload(0x2a20),
/*point^(trace_length / 512)*/ mload(0x2a20),
PRIME))
// expmods[5] = point^(trace_length / 128).
mstore(0x2a60, mulmod(
/*point^(trace_length / 256)*/ mload(0x2a40),
/*point^(trace_length / 256)*/ mload(0x2a40),
PRIME))
// expmods[6] = point^(trace_length / 32).
mstore(0x2a80, expmod(point, div(/*trace_length*/ mload(0x80), 32), PRIME))
// expmods[7] = point^(trace_length / 16).
mstore(0x2aa0, mulmod(
/*point^(trace_length / 32)*/ mload(0x2a80),
/*point^(trace_length / 32)*/ mload(0x2a80),
PRIME))
// expmods[8] = point^(trace_length / 8).
mstore(0x2ac0, mulmod(
/*point^(trace_length / 16)*/ mload(0x2aa0),
/*point^(trace_length / 16)*/ mload(0x2aa0),
PRIME))
// expmods[9] = point^(trace_length / 4).
mstore(0x2ae0, mulmod(
/*point^(trace_length / 8)*/ mload(0x2ac0),
/*point^(trace_length / 8)*/ mload(0x2ac0),
PRIME))
// expmods[10] = point^(trace_length / 2).
mstore(0x2b00, mulmod(
/*point^(trace_length / 4)*/ mload(0x2ae0),
/*point^(trace_length / 4)*/ mload(0x2ae0),
PRIME))
// expmods[11] = point^trace_length.
mstore(0x2b20, mulmod(
/*point^(trace_length / 2)*/ mload(0x2b00),
/*point^(trace_length / 2)*/ mload(0x2b00),
PRIME))
// expmods[12] = trace_generator^(trace_length / 64).
mstore(0x2b40, expmod(/*trace_generator*/ mload(0x440), div(/*trace_length*/ mload(0x80), 64), PRIME))
// expmods[13] = trace_generator^(trace_length / 32).
mstore(0x2b60, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
PRIME))
// expmods[14] = trace_generator^(3 * trace_length / 64).
mstore(0x2b80, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(trace_length / 32)*/ mload(0x2b60),
PRIME))
// expmods[15] = trace_generator^(trace_length / 16).
mstore(0x2ba0, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(3 * trace_length / 64)*/ mload(0x2b80),
PRIME))
// expmods[16] = trace_generator^(5 * trace_length / 64).
mstore(0x2bc0, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(trace_length / 16)*/ mload(0x2ba0),
PRIME))
// expmods[17] = trace_generator^(3 * trace_length / 32).
mstore(0x2be0, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(5 * trace_length / 64)*/ mload(0x2bc0),
PRIME))
// expmods[18] = trace_generator^(7 * trace_length / 64).
mstore(0x2c00, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(3 * trace_length / 32)*/ mload(0x2be0),
PRIME))
// expmods[19] = trace_generator^(trace_length / 8).
mstore(0x2c20, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(7 * trace_length / 64)*/ mload(0x2c00),
PRIME))
// expmods[20] = trace_generator^(9 * trace_length / 64).
mstore(0x2c40, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(trace_length / 8)*/ mload(0x2c20),
PRIME))
// expmods[21] = trace_generator^(5 * trace_length / 32).
mstore(0x2c60, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(9 * trace_length / 64)*/ mload(0x2c40),
PRIME))
// expmods[22] = trace_generator^(11 * trace_length / 64).
mstore(0x2c80, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(5 * trace_length / 32)*/ mload(0x2c60),
PRIME))
// expmods[23] = trace_generator^(3 * trace_length / 16).
mstore(0x2ca0, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(11 * trace_length / 64)*/ mload(0x2c80),
PRIME))
// expmods[24] = trace_generator^(13 * trace_length / 64).
mstore(0x2cc0, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(3 * trace_length / 16)*/ mload(0x2ca0),
PRIME))
// expmods[25] = trace_generator^(7 * trace_length / 32).
mstore(0x2ce0, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(13 * trace_length / 64)*/ mload(0x2cc0),
PRIME))
// expmods[26] = trace_generator^(15 * trace_length / 64).
mstore(0x2d00, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(7 * trace_length / 32)*/ mload(0x2ce0),
PRIME))
// expmods[27] = trace_generator^(trace_length / 2).
mstore(0x2d20, expmod(/*trace_generator*/ mload(0x440), div(/*trace_length*/ mload(0x80), 2), PRIME))
// expmods[28] = trace_generator^(3 * trace_length / 4).
mstore(0x2d40, expmod(/*trace_generator*/ mload(0x440), div(mul(3, /*trace_length*/ mload(0x80)), 4), PRIME))
// expmods[29] = trace_generator^(15 * trace_length / 16).
mstore(0x2d60, mulmod(
/*trace_generator^(3 * trace_length / 16)*/ mload(0x2ca0),
/*trace_generator^(3 * trace_length / 4)*/ mload(0x2d40),
PRIME))
// expmods[30] = trace_generator^(251 * trace_length / 256).
mstore(0x2d80, expmod(/*trace_generator*/ mload(0x440), div(mul(251, /*trace_length*/ mload(0x80)), 256), PRIME))
// expmods[31] = trace_generator^(63 * trace_length / 64).
mstore(0x2da0, mulmod(
/*trace_generator^(3 * trace_length / 64)*/ mload(0x2b80),
/*trace_generator^(15 * trace_length / 16)*/ mload(0x2d60),
PRIME))
// expmods[32] = trace_generator^(255 * trace_length / 256).
mstore(0x2dc0, mulmod(
/*trace_generator^(trace_length / 64)*/ mload(0x2b40),
/*trace_generator^(251 * trace_length / 256)*/ mload(0x2d80),
PRIME))
// expmods[33] = trace_generator^(trace_length - 16).
mstore(0x2de0, expmod(/*trace_generator*/ mload(0x440), sub(/*trace_length*/ mload(0x80), 16), PRIME))
// expmods[34] = trace_generator^(trace_length - 2).
mstore(0x2e00, expmod(/*trace_generator*/ mload(0x440), sub(/*trace_length*/ mload(0x80), 2), PRIME))
// expmods[35] = trace_generator^(trace_length - 4).
mstore(0x2e20, expmod(/*trace_generator*/ mload(0x440), sub(/*trace_length*/ mload(0x80), 4), PRIME))
// expmods[36] = trace_generator^(trace_length - 8).
mstore(0x2e40, expmod(/*trace_generator*/ mload(0x440), sub(/*trace_length*/ mload(0x80), 8), PRIME))
// expmods[37] = trace_generator^(trace_length - 128).
mstore(0x2e60, expmod(/*trace_generator*/ mload(0x440), sub(/*trace_length*/ mload(0x80), 128), PRIME))
// expmods[38] = trace_generator^(trace_length - 8192).
mstore(0x2e80, expmod(/*trace_generator*/ mload(0x440), sub(/*trace_length*/ mload(0x80), 8192), PRIME))
// expmods[39] = trace_generator^(trace_length - 1024).
mstore(0x2ea0, expmod(/*trace_generator*/ mload(0x440), sub(/*trace_length*/ mload(0x80), 1024), PRIME))
}
{
// Compute domains.
// Denominator for constraints: 'cpu/decode/opcode_range_check/bit', 'pedersen/hash0/ec_subset_sum/booleanity_test', 'pedersen/hash0/ec_subset_sum/add_points/slope', 'pedersen/hash0/ec_subset_sum/add_points/x', 'pedersen/hash0/ec_subset_sum/add_points/y', 'pedersen/hash0/ec_subset_sum/copy_point/x', 'pedersen/hash0/ec_subset_sum/copy_point/y', 'pedersen/hash1/ec_subset_sum/booleanity_test', 'pedersen/hash1/ec_subset_sum/add_points/slope', 'pedersen/hash1/ec_subset_sum/add_points/x', 'pedersen/hash1/ec_subset_sum/add_points/y', 'pedersen/hash1/ec_subset_sum/copy_point/x', 'pedersen/hash1/ec_subset_sum/copy_point/y', 'pedersen/hash2/ec_subset_sum/booleanity_test', 'pedersen/hash2/ec_subset_sum/add_points/slope', 'pedersen/hash2/ec_subset_sum/add_points/x', 'pedersen/hash2/ec_subset_sum/add_points/y', 'pedersen/hash2/ec_subset_sum/copy_point/x', 'pedersen/hash2/ec_subset_sum/copy_point/y', 'pedersen/hash3/ec_subset_sum/booleanity_test', 'pedersen/hash3/ec_subset_sum/add_points/slope', 'pedersen/hash3/ec_subset_sum/add_points/x', 'pedersen/hash3/ec_subset_sum/add_points/y', 'pedersen/hash3/ec_subset_sum/copy_point/x', 'pedersen/hash3/ec_subset_sum/copy_point/y'.
// domains[0] = point^trace_length - 1.
mstore(0x2ec0,
addmod(/*point^trace_length*/ mload(0x2b20), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'memory/multi_column_perm/perm/step0', 'memory/diff_is_bit', 'memory/is_func'.
// domains[1] = point^(trace_length / 2) - 1.
mstore(0x2ee0,
addmod(/*point^(trace_length / 2)*/ mload(0x2b00), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'range_check16/perm/step0', 'range_check16/diff_is_bit'.
// domains[2] = point^(trace_length / 4) - 1.
mstore(0x2f00,
addmod(/*point^(trace_length / 4)*/ mload(0x2ae0), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'public_memory_addr_zero', 'public_memory_value_zero', 'diluted_check/permutation/step0', 'diluted_check/step'.
// domains[3] = point^(trace_length / 8) - 1.
mstore(0x2f20,
addmod(/*point^(trace_length / 8)*/ mload(0x2ac0), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'cpu/decode/opcode_range_check/zero'.
// Numerator for constraints: 'cpu/decode/opcode_range_check/bit'.
// domains[4] = point^(trace_length / 16) - trace_generator^(15 * trace_length / 16).
mstore(0x2f40,
addmod(
/*point^(trace_length / 16)*/ mload(0x2aa0),
sub(PRIME, /*trace_generator^(15 * trace_length / 16)*/ mload(0x2d60)),
PRIME))
// Denominator for constraints: 'cpu/decode/opcode_range_check_input', 'cpu/decode/flag_op1_base_op0_bit', 'cpu/decode/flag_res_op1_bit', 'cpu/decode/flag_pc_update_regular_bit', 'cpu/decode/fp_update_regular_bit', 'cpu/operands/mem_dst_addr', 'cpu/operands/mem0_addr', 'cpu/operands/mem1_addr', 'cpu/operands/ops_mul', 'cpu/operands/res', 'cpu/update_registers/update_pc/tmp0', 'cpu/update_registers/update_pc/tmp1', 'cpu/update_registers/update_pc/pc_cond_negative', 'cpu/update_registers/update_pc/pc_cond_positive', 'cpu/update_registers/update_ap/ap_update', 'cpu/update_registers/update_fp/fp_update', 'cpu/opcodes/call/push_fp', 'cpu/opcodes/call/push_pc', 'cpu/opcodes/call/off0', 'cpu/opcodes/call/off1', 'cpu/opcodes/call/flags', 'cpu/opcodes/ret/off0', 'cpu/opcodes/ret/off2', 'cpu/opcodes/ret/flags', 'cpu/opcodes/assert_eq/assert_eq', 'ecdsa/signature0/doubling_key/slope', 'ecdsa/signature0/doubling_key/x', 'ecdsa/signature0/doubling_key/y', 'ecdsa/signature0/exponentiate_key/booleanity_test', 'ecdsa/signature0/exponentiate_key/add_points/slope', 'ecdsa/signature0/exponentiate_key/add_points/x', 'ecdsa/signature0/exponentiate_key/add_points/y', 'ecdsa/signature0/exponentiate_key/add_points/x_diff_inv', 'ecdsa/signature0/exponentiate_key/copy_point/x', 'ecdsa/signature0/exponentiate_key/copy_point/y'.
// domains[5] = point^(trace_length / 16) - 1.
mstore(0x2f60,
addmod(/*point^(trace_length / 16)*/ mload(0x2aa0), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'ecdsa/signature0/exponentiate_generator/booleanity_test', 'ecdsa/signature0/exponentiate_generator/add_points/slope', 'ecdsa/signature0/exponentiate_generator/add_points/x', 'ecdsa/signature0/exponentiate_generator/add_points/y', 'ecdsa/signature0/exponentiate_generator/add_points/x_diff_inv', 'ecdsa/signature0/exponentiate_generator/copy_point/x', 'ecdsa/signature0/exponentiate_generator/copy_point/y'.
// domains[6] = point^(trace_length / 32) - 1.
mstore(0x2f80,
addmod(/*point^(trace_length / 32)*/ mload(0x2a80), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'pedersen/input0_addr', 'pedersen/input1_addr', 'pedersen/output_addr', 'range_check_builtin/value', 'range_check_builtin/addr_step'.
// domains[7] = point^(trace_length / 128) - 1.
mstore(0x2fa0,
addmod(/*point^(trace_length / 128)*/ mload(0x2a60), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'pedersen/hash0/ec_subset_sum/bit_unpacking/last_one_is_zero', 'pedersen/hash0/ec_subset_sum/bit_unpacking/zeroes_between_ones0', 'pedersen/hash0/ec_subset_sum/bit_unpacking/cumulative_bit192', 'pedersen/hash0/ec_subset_sum/bit_unpacking/zeroes_between_ones192', 'pedersen/hash0/ec_subset_sum/bit_unpacking/cumulative_bit196', 'pedersen/hash0/ec_subset_sum/bit_unpacking/zeroes_between_ones196', 'pedersen/hash0/copy_point/x', 'pedersen/hash0/copy_point/y', 'pedersen/hash1/ec_subset_sum/bit_unpacking/last_one_is_zero', 'pedersen/hash1/ec_subset_sum/bit_unpacking/zeroes_between_ones0', 'pedersen/hash1/ec_subset_sum/bit_unpacking/cumulative_bit192', 'pedersen/hash1/ec_subset_sum/bit_unpacking/zeroes_between_ones192', 'pedersen/hash1/ec_subset_sum/bit_unpacking/cumulative_bit196', 'pedersen/hash1/ec_subset_sum/bit_unpacking/zeroes_between_ones196', 'pedersen/hash1/copy_point/x', 'pedersen/hash1/copy_point/y', 'pedersen/hash2/ec_subset_sum/bit_unpacking/last_one_is_zero', 'pedersen/hash2/ec_subset_sum/bit_unpacking/zeroes_between_ones0', 'pedersen/hash2/ec_subset_sum/bit_unpacking/cumulative_bit192', 'pedersen/hash2/ec_subset_sum/bit_unpacking/zeroes_between_ones192', 'pedersen/hash2/ec_subset_sum/bit_unpacking/cumulative_bit196', 'pedersen/hash2/ec_subset_sum/bit_unpacking/zeroes_between_ones196', 'pedersen/hash2/copy_point/x', 'pedersen/hash2/copy_point/y', 'pedersen/hash3/ec_subset_sum/bit_unpacking/last_one_is_zero', 'pedersen/hash3/ec_subset_sum/bit_unpacking/zeroes_between_ones0', 'pedersen/hash3/ec_subset_sum/bit_unpacking/cumulative_bit192', 'pedersen/hash3/ec_subset_sum/bit_unpacking/zeroes_between_ones192', 'pedersen/hash3/ec_subset_sum/bit_unpacking/cumulative_bit196', 'pedersen/hash3/ec_subset_sum/bit_unpacking/zeroes_between_ones196', 'pedersen/hash3/copy_point/x', 'pedersen/hash3/copy_point/y', 'bitwise/step_var_pool_addr', 'bitwise/partition'.
// domains[8] = point^(trace_length / 256) - 1.
mstore(0x2fc0,
addmod(/*point^(trace_length / 256)*/ mload(0x2a40), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'pedersen/hash0/ec_subset_sum/zeros_tail', 'pedersen/hash1/ec_subset_sum/zeros_tail', 'pedersen/hash2/ec_subset_sum/zeros_tail', 'pedersen/hash3/ec_subset_sum/zeros_tail'.
// Numerator for constraints: 'pedersen/hash0/ec_subset_sum/booleanity_test', 'pedersen/hash0/ec_subset_sum/add_points/slope', 'pedersen/hash0/ec_subset_sum/add_points/x', 'pedersen/hash0/ec_subset_sum/add_points/y', 'pedersen/hash0/ec_subset_sum/copy_point/x', 'pedersen/hash0/ec_subset_sum/copy_point/y', 'pedersen/hash1/ec_subset_sum/booleanity_test', 'pedersen/hash1/ec_subset_sum/add_points/slope', 'pedersen/hash1/ec_subset_sum/add_points/x', 'pedersen/hash1/ec_subset_sum/add_points/y', 'pedersen/hash1/ec_subset_sum/copy_point/x', 'pedersen/hash1/ec_subset_sum/copy_point/y', 'pedersen/hash2/ec_subset_sum/booleanity_test', 'pedersen/hash2/ec_subset_sum/add_points/slope', 'pedersen/hash2/ec_subset_sum/add_points/x', 'pedersen/hash2/ec_subset_sum/add_points/y', 'pedersen/hash2/ec_subset_sum/copy_point/x', 'pedersen/hash2/ec_subset_sum/copy_point/y', 'pedersen/hash3/ec_subset_sum/booleanity_test', 'pedersen/hash3/ec_subset_sum/add_points/slope', 'pedersen/hash3/ec_subset_sum/add_points/x', 'pedersen/hash3/ec_subset_sum/add_points/y', 'pedersen/hash3/ec_subset_sum/copy_point/x', 'pedersen/hash3/ec_subset_sum/copy_point/y'.
// domains[9] = point^(trace_length / 256) - trace_generator^(255 * trace_length / 256).
mstore(0x2fe0,
addmod(
/*point^(trace_length / 256)*/ mload(0x2a40),
sub(PRIME, /*trace_generator^(255 * trace_length / 256)*/ mload(0x2dc0)),
PRIME))
// Denominator for constraints: 'pedersen/hash0/ec_subset_sum/bit_extraction_end', 'pedersen/hash1/ec_subset_sum/bit_extraction_end', 'pedersen/hash2/ec_subset_sum/bit_extraction_end', 'pedersen/hash3/ec_subset_sum/bit_extraction_end'.
// domains[10] = point^(trace_length / 256) - trace_generator^(63 * trace_length / 64).
mstore(0x3000,
addmod(
/*point^(trace_length / 256)*/ mload(0x2a40),
sub(PRIME, /*trace_generator^(63 * trace_length / 64)*/ mload(0x2da0)),
PRIME))
// Numerator for constraints: 'pedersen/hash0/copy_point/x', 'pedersen/hash0/copy_point/y', 'pedersen/hash1/copy_point/x', 'pedersen/hash1/copy_point/y', 'pedersen/hash2/copy_point/x', 'pedersen/hash2/copy_point/y', 'pedersen/hash3/copy_point/x', 'pedersen/hash3/copy_point/y'.
// domains[11] = point^(trace_length / 512) - trace_generator^(trace_length / 2).
mstore(0x3020,
addmod(
/*point^(trace_length / 512)*/ mload(0x2a20),
sub(PRIME, /*trace_generator^(trace_length / 2)*/ mload(0x2d20)),
PRIME))
// Denominator for constraints: 'pedersen/hash0/init/x', 'pedersen/hash0/init/y', 'pedersen/hash1/init/x', 'pedersen/hash1/init/y', 'pedersen/hash2/init/x', 'pedersen/hash2/init/y', 'pedersen/hash3/init/x', 'pedersen/hash3/init/y', 'pedersen/input0_value0', 'pedersen/input0_value1', 'pedersen/input0_value2', 'pedersen/input0_value3', 'pedersen/input1_value0', 'pedersen/input1_value1', 'pedersen/input1_value2', 'pedersen/input1_value3', 'pedersen/output_value0', 'pedersen/output_value1', 'pedersen/output_value2', 'pedersen/output_value3'.
// domains[12] = point^(trace_length / 512) - 1.
mstore(0x3040,
addmod(/*point^(trace_length / 512)*/ mload(0x2a20), sub(PRIME, 1), PRIME))
// Numerator for constraints: 'bitwise/step_var_pool_addr'.
// domains[13] = point^(trace_length / 1024) - trace_generator^(3 * trace_length / 4).
mstore(0x3060,
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(3 * trace_length / 4)*/ mload(0x2d40)),
PRIME))
// Denominator for constraints: 'bitwise/x_or_y_addr', 'bitwise/next_var_pool_addr', 'bitwise/or_is_and_plus_xor', 'bitwise/unique_unpacking192', 'bitwise/unique_unpacking193', 'bitwise/unique_unpacking194', 'bitwise/unique_unpacking195'.
// domains[14] = point^(trace_length / 1024) - 1.
mstore(0x3080,
addmod(/*point^(trace_length / 1024)*/ mload(0x2a00), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'bitwise/addition_is_xor_with_and'.
// domains[15] = (point^(trace_length / 1024) - trace_generator^(trace_length / 64)) * (point^(trace_length / 1024) - trace_generator^(trace_length / 32)) * (point^(trace_length / 1024) - trace_generator^(3 * trace_length / 64)) * (point^(trace_length / 1024) - trace_generator^(trace_length / 16)) * (point^(trace_length / 1024) - trace_generator^(5 * trace_length / 64)) * (point^(trace_length / 1024) - trace_generator^(3 * trace_length / 32)) * (point^(trace_length / 1024) - trace_generator^(7 * trace_length / 64)) * (point^(trace_length / 1024) - trace_generator^(trace_length / 8)) * (point^(trace_length / 1024) - trace_generator^(9 * trace_length / 64)) * (point^(trace_length / 1024) - trace_generator^(5 * trace_length / 32)) * (point^(trace_length / 1024) - trace_generator^(11 * trace_length / 64)) * (point^(trace_length / 1024) - trace_generator^(3 * trace_length / 16)) * (point^(trace_length / 1024) - trace_generator^(13 * trace_length / 64)) * (point^(trace_length / 1024) - trace_generator^(7 * trace_length / 32)) * (point^(trace_length / 1024) - trace_generator^(15 * trace_length / 64)) * domain14.
{
let domain := mulmod(
mulmod(
mulmod(
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(trace_length / 64)*/ mload(0x2b40)),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(trace_length / 32)*/ mload(0x2b60)),
PRIME),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(3 * trace_length / 64)*/ mload(0x2b80)),
PRIME),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(trace_length / 16)*/ mload(0x2ba0)),
PRIME),
PRIME)
domain := mulmod(
domain,
mulmod(
mulmod(
mulmod(
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(5 * trace_length / 64)*/ mload(0x2bc0)),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(3 * trace_length / 32)*/ mload(0x2be0)),
PRIME),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(7 * trace_length / 64)*/ mload(0x2c00)),
PRIME),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(trace_length / 8)*/ mload(0x2c20)),
PRIME),
PRIME),
PRIME)
domain := mulmod(
domain,
mulmod(
mulmod(
mulmod(
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(9 * trace_length / 64)*/ mload(0x2c40)),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(5 * trace_length / 32)*/ mload(0x2c60)),
PRIME),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(11 * trace_length / 64)*/ mload(0x2c80)),
PRIME),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(3 * trace_length / 16)*/ mload(0x2ca0)),
PRIME),
PRIME),
PRIME)
domain := mulmod(
domain,
mulmod(
mulmod(
mulmod(
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(13 * trace_length / 64)*/ mload(0x2cc0)),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(7 * trace_length / 32)*/ mload(0x2ce0)),
PRIME),
PRIME),
addmod(
/*point^(trace_length / 1024)*/ mload(0x2a00),
sub(PRIME, /*trace_generator^(15 * trace_length / 64)*/ mload(0x2d00)),
PRIME),
PRIME),
/*domains[14]*/ mload(0x3080),
PRIME),
PRIME)
mstore(0x30a0, domain)
}
// Denominator for constraints: 'ecdsa/signature0/exponentiate_key/zeros_tail'.
// Numerator for constraints: 'ecdsa/signature0/doubling_key/slope', 'ecdsa/signature0/doubling_key/x', 'ecdsa/signature0/doubling_key/y', 'ecdsa/signature0/exponentiate_key/booleanity_test', 'ecdsa/signature0/exponentiate_key/add_points/slope', 'ecdsa/signature0/exponentiate_key/add_points/x', 'ecdsa/signature0/exponentiate_key/add_points/y', 'ecdsa/signature0/exponentiate_key/add_points/x_diff_inv', 'ecdsa/signature0/exponentiate_key/copy_point/x', 'ecdsa/signature0/exponentiate_key/copy_point/y'.
// domains[16] = point^(trace_length / 4096) - trace_generator^(255 * trace_length / 256).
mstore(0x30c0,
addmod(
/*point^(trace_length / 4096)*/ mload(0x29e0),
sub(PRIME, /*trace_generator^(255 * trace_length / 256)*/ mload(0x2dc0)),
PRIME))
// Denominator for constraints: 'ecdsa/signature0/exponentiate_key/bit_extraction_end'.
// domains[17] = point^(trace_length / 4096) - trace_generator^(251 * trace_length / 256).
mstore(0x30e0,
addmod(
/*point^(trace_length / 4096)*/ mload(0x29e0),
sub(PRIME, /*trace_generator^(251 * trace_length / 256)*/ mload(0x2d80)),
PRIME))
// Denominator for constraints: 'ecdsa/signature0/init_key/x', 'ecdsa/signature0/init_key/y', 'ecdsa/signature0/r_and_w_nonzero'.
// domains[18] = point^(trace_length / 4096) - 1.
mstore(0x3100,
addmod(/*point^(trace_length / 4096)*/ mload(0x29e0), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'ecdsa/signature0/exponentiate_generator/zeros_tail'.
// Numerator for constraints: 'ecdsa/signature0/exponentiate_generator/booleanity_test', 'ecdsa/signature0/exponentiate_generator/add_points/slope', 'ecdsa/signature0/exponentiate_generator/add_points/x', 'ecdsa/signature0/exponentiate_generator/add_points/y', 'ecdsa/signature0/exponentiate_generator/add_points/x_diff_inv', 'ecdsa/signature0/exponentiate_generator/copy_point/x', 'ecdsa/signature0/exponentiate_generator/copy_point/y'.
// domains[19] = point^(trace_length / 8192) - trace_generator^(255 * trace_length / 256).
mstore(0x3120,
addmod(
/*point^(trace_length / 8192)*/ mload(0x29c0),
sub(PRIME, /*trace_generator^(255 * trace_length / 256)*/ mload(0x2dc0)),
PRIME))
// Denominator for constraints: 'ecdsa/signature0/exponentiate_generator/bit_extraction_end'.
// domains[20] = point^(trace_length / 8192) - trace_generator^(251 * trace_length / 256).
mstore(0x3140,
addmod(
/*point^(trace_length / 8192)*/ mload(0x29c0),
sub(PRIME, /*trace_generator^(251 * trace_length / 256)*/ mload(0x2d80)),
PRIME))
// Denominator for constraints: 'ecdsa/signature0/init_gen/x', 'ecdsa/signature0/init_gen/y', 'ecdsa/signature0/add_results/slope', 'ecdsa/signature0/add_results/x', 'ecdsa/signature0/add_results/y', 'ecdsa/signature0/add_results/x_diff_inv', 'ecdsa/signature0/extract_r/slope', 'ecdsa/signature0/extract_r/x', 'ecdsa/signature0/extract_r/x_diff_inv', 'ecdsa/signature0/z_nonzero', 'ecdsa/signature0/q_on_curve/x_squared', 'ecdsa/signature0/q_on_curve/on_curve', 'ecdsa/message_addr', 'ecdsa/pubkey_addr', 'ecdsa/message_value0', 'ecdsa/pubkey_value0'.
// domains[21] = point^(trace_length / 8192) - 1.
mstore(0x3160,
addmod(/*point^(trace_length / 8192)*/ mload(0x29c0), sub(PRIME, 1), PRIME))
// Denominator for constraints: 'final_ap', 'final_fp', 'final_pc'.
// Numerator for constraints: 'cpu/update_registers/update_pc/tmp0', 'cpu/update_registers/update_pc/tmp1', 'cpu/update_registers/update_pc/pc_cond_negative', 'cpu/update_registers/update_pc/pc_cond_positive', 'cpu/update_registers/update_ap/ap_update', 'cpu/update_registers/update_fp/fp_update'.
// domains[22] = point - trace_generator^(trace_length - 16).
mstore(0x3180,
addmod(point, sub(PRIME, /*trace_generator^(trace_length - 16)*/ mload(0x2de0)), PRIME))
// Denominator for constraints: 'initial_ap', 'initial_fp', 'initial_pc', 'memory/multi_column_perm/perm/init0', 'memory/initial_addr', 'range_check16/perm/init0', 'range_check16/minimum', 'diluted_check/permutation/init0', 'diluted_check/init', 'diluted_check/first_element', 'pedersen/init_addr', 'range_check_builtin/init_addr', 'ecdsa/init_addr', 'bitwise/init_var_pool_addr'.
// domains[23] = point - 1.
mstore(0x31a0,
addmod(point, sub(PRIME, 1), PRIME))
// Denominator for constraints: 'memory/multi_column_perm/perm/last'.
// Numerator for constraints: 'memory/multi_column_perm/perm/step0', 'memory/diff_is_bit', 'memory/is_func'.
// domains[24] = point - trace_generator^(trace_length - 2).
mstore(0x31c0,
addmod(point, sub(PRIME, /*trace_generator^(trace_length - 2)*/ mload(0x2e00)), PRIME))
// Denominator for constraints: 'range_check16/perm/last', 'range_check16/maximum'.
// Numerator for constraints: 'range_check16/perm/step0', 'range_check16/diff_is_bit'.
// domains[25] = point - trace_generator^(trace_length - 4).
mstore(0x31e0,
addmod(point, sub(PRIME, /*trace_generator^(trace_length - 4)*/ mload(0x2e20)), PRIME))
// Denominator for constraints: 'diluted_check/permutation/last', 'diluted_check/last'.
// Numerator for constraints: 'diluted_check/permutation/step0', 'diluted_check/step'.
// domains[26] = point - trace_generator^(trace_length - 8).
mstore(0x3200,
addmod(point, sub(PRIME, /*trace_generator^(trace_length - 8)*/ mload(0x2e40)), PRIME))
// Numerator for constraints: 'pedersen/input0_addr', 'range_check_builtin/addr_step'.
// domains[27] = point - trace_generator^(trace_length - 128).
mstore(0x3220,
addmod(point, sub(PRIME, /*trace_generator^(trace_length - 128)*/ mload(0x2e60)), PRIME))
// Numerator for constraints: 'ecdsa/pubkey_addr'.
// domains[28] = point - trace_generator^(trace_length - 8192).
mstore(0x3240,
addmod(point, sub(PRIME, /*trace_generator^(trace_length - 8192)*/ mload(0x2e80)), PRIME))
// Numerator for constraints: 'bitwise/next_var_pool_addr'.
// domains[29] = point - trace_generator^(trace_length - 1024).
mstore(0x3260,
addmod(point, sub(PRIME, /*trace_generator^(trace_length - 1024)*/ mload(0x2ea0)), PRIME))
}
{
// Prepare denominators for batch inverse.
// denominators[0] = domains[0].
mstore(0x35a0, /*domains[0]*/ mload(0x2ec0))
// denominators[1] = domains[4].
mstore(0x35c0, /*domains[4]*/ mload(0x2f40))
// denominators[2] = domains[5].
mstore(0x35e0, /*domains[5]*/ mload(0x2f60))
// denominators[3] = domains[22].
mstore(0x3600, /*domains[22]*/ mload(0x3180))
// denominators[4] = domains[23].
mstore(0x3620, /*domains[23]*/ mload(0x31a0))
// denominators[5] = domains[1].
mstore(0x3640, /*domains[1]*/ mload(0x2ee0))
// denominators[6] = domains[24].
mstore(0x3660, /*domains[24]*/ mload(0x31c0))
// denominators[7] = domains[3].
mstore(0x3680, /*domains[3]*/ mload(0x2f20))
// denominators[8] = domains[2].
mstore(0x36a0, /*domains[2]*/ mload(0x2f00))
// denominators[9] = domains[25].
mstore(0x36c0, /*domains[25]*/ mload(0x31e0))
// denominators[10] = domains[26].
mstore(0x36e0, /*domains[26]*/ mload(0x3200))
// denominators[11] = domains[8].
mstore(0x3700, /*domains[8]*/ mload(0x2fc0))
// denominators[12] = domains[9].
mstore(0x3720, /*domains[9]*/ mload(0x2fe0))
// denominators[13] = domains[10].
mstore(0x3740, /*domains[10]*/ mload(0x3000))
// denominators[14] = domains[12].
mstore(0x3760, /*domains[12]*/ mload(0x3040))
// denominators[15] = domains[7].
mstore(0x3780, /*domains[7]*/ mload(0x2fa0))
// denominators[16] = domains[16].
mstore(0x37a0, /*domains[16]*/ mload(0x30c0))
// denominators[17] = domains[6].
mstore(0x37c0, /*domains[6]*/ mload(0x2f80))
// denominators[18] = domains[19].
mstore(0x37e0, /*domains[19]*/ mload(0x3120))
// denominators[19] = domains[20].
mstore(0x3800, /*domains[20]*/ mload(0x3140))
// denominators[20] = domains[17].
mstore(0x3820, /*domains[17]*/ mload(0x30e0))
// denominators[21] = domains[21].
mstore(0x3840, /*domains[21]*/ mload(0x3160))
// denominators[22] = domains[18].
mstore(0x3860, /*domains[18]*/ mload(0x3100))
// denominators[23] = domains[14].
mstore(0x3880, /*domains[14]*/ mload(0x3080))
// denominators[24] = domains[15].
mstore(0x38a0, /*domains[15]*/ mload(0x30a0))
}
{
// Compute the inverses of the denominators into denominatorInvs using batch inverse.
// Start by computing the cumulative product.
// Let (d_0, d_1, d_2, ..., d_{n-1}) be the values in denominators. After this loop
// denominatorInvs will be (1, d_0, d_0 * d_1, ...) and prod will contain the value of
// d_0 * ... * d_{n-1}.
// Compute the offset between the partialProducts array and the input values array.
let productsToValuesOffset := 0x320
let prod := 1
let partialProductEndPtr := 0x35a0
for { let partialProductPtr := 0x3280 }
lt(partialProductPtr, partialProductEndPtr)
{ partialProductPtr := add(partialProductPtr, 0x20) } {
mstore(partialProductPtr, prod)
// prod *= d_{i}.
prod := mulmod(prod,
mload(add(partialProductPtr, productsToValuesOffset)),
PRIME)
}
let firstPartialProductPtr := 0x3280
// Compute the inverse of the product.
let prodInv := expmod(prod, sub(PRIME, 2), PRIME)
if eq(prodInv, 0) {
// Solidity generates reverts with reason that look as follows:
// 1. 4 bytes with the constant 0x08c379a0 (== Keccak256(b'Error(string)')[:4]).
// 2. 32 bytes offset bytes (always 0x20 as far as i can tell).
// 3. 32 bytes with the length of the revert reason.
// 4. Revert reason string.
mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
mstore(0x4, 0x20)
mstore(0x24, 0x1e)
mstore(0x44, "Batch inverse product is zero.")
revert(0, 0x62)
}
// Compute the inverses.
// Loop over denominator_invs in reverse order.
// currentPartialProductPtr is initialized to one past the end.
let currentPartialProductPtr := 0x35a0
for { } gt(currentPartialProductPtr, firstPartialProductPtr) { } {
currentPartialProductPtr := sub(currentPartialProductPtr, 0x20)
// Store 1/d_{i} = (d_0 * ... * d_{i-1}) * 1/(d_0 * ... * d_{i}).
mstore(currentPartialProductPtr,
mulmod(mload(currentPartialProductPtr), prodInv, PRIME))
// Update prodInv to be 1/(d_0 * ... * d_{i-1}) by multiplying by d_i.
prodInv := mulmod(prodInv,
mload(add(currentPartialProductPtr, productsToValuesOffset)),
PRIME)
}
}
{
// Compute the result of the composition polynomial.
{
// cpu/decode/opcode_range_check/bit_0 = column0_row0 - (column0_row1 + column0_row1).
let val := addmod(
/*column0_row0*/ mload(0x560),
sub(
PRIME,
addmod(/*column0_row1*/ mload(0x580), /*column0_row1*/ mload(0x580), PRIME)),
PRIME)
mstore(0x2420, val)
}
{
// cpu/decode/opcode_range_check/bit_2 = column0_row2 - (column0_row3 + column0_row3).
let val := addmod(
/*column0_row2*/ mload(0x5a0),
sub(
PRIME,
addmod(/*column0_row3*/ mload(0x5c0), /*column0_row3*/ mload(0x5c0), PRIME)),
PRIME)
mstore(0x2440, val)
}
{
// cpu/decode/opcode_range_check/bit_4 = column0_row4 - (column0_row5 + column0_row5).
let val := addmod(
/*column0_row4*/ mload(0x5e0),
sub(
PRIME,
addmod(/*column0_row5*/ mload(0x600), /*column0_row5*/ mload(0x600), PRIME)),
PRIME)
mstore(0x2460, val)
}
{
// cpu/decode/opcode_range_check/bit_3 = column0_row3 - (column0_row4 + column0_row4).
let val := addmod(
/*column0_row3*/ mload(0x5c0),
sub(
PRIME,
addmod(/*column0_row4*/ mload(0x5e0), /*column0_row4*/ mload(0x5e0), PRIME)),
PRIME)
mstore(0x2480, val)
}
{
// cpu/decode/flag_op1_base_op0_0 = 1 - (cpu__decode__opcode_range_check__bit_2 + cpu__decode__opcode_range_check__bit_4 + cpu__decode__opcode_range_check__bit_3).
let val := addmod(
1,
sub(
PRIME,
addmod(
addmod(
/*intermediate_value/cpu/decode/opcode_range_check/bit_2*/ mload(0x2440),
/*intermediate_value/cpu/decode/opcode_range_check/bit_4*/ mload(0x2460),
PRIME),
/*intermediate_value/cpu/decode/opcode_range_check/bit_3*/ mload(0x2480),
PRIME)),
PRIME)
mstore(0x24a0, val)
}
{
// cpu/decode/opcode_range_check/bit_5 = column0_row5 - (column0_row6 + column0_row6).
let val := addmod(
/*column0_row5*/ mload(0x600),
sub(
PRIME,
addmod(/*column0_row6*/ mload(0x620), /*column0_row6*/ mload(0x620), PRIME)),
PRIME)
mstore(0x24c0, val)
}
{
// cpu/decode/opcode_range_check/bit_6 = column0_row6 - (column0_row7 + column0_row7).
let val := addmod(
/*column0_row6*/ mload(0x620),
sub(
PRIME,
addmod(/*column0_row7*/ mload(0x640), /*column0_row7*/ mload(0x640), PRIME)),
PRIME)
mstore(0x24e0, val)
}
{
// cpu/decode/opcode_range_check/bit_9 = column0_row9 - (column0_row10 + column0_row10).
let val := addmod(
/*column0_row9*/ mload(0x680),
sub(
PRIME,
addmod(/*column0_row10*/ mload(0x6a0), /*column0_row10*/ mload(0x6a0), PRIME)),
PRIME)
mstore(0x2500, val)
}
{
// cpu/decode/flag_res_op1_0 = 1 - (cpu__decode__opcode_range_check__bit_5 + cpu__decode__opcode_range_check__bit_6 + cpu__decode__opcode_range_check__bit_9).
let val := addmod(
1,
sub(
PRIME,
addmod(
addmod(
/*intermediate_value/cpu/decode/opcode_range_check/bit_5*/ mload(0x24c0),
/*intermediate_value/cpu/decode/opcode_range_check/bit_6*/ mload(0x24e0),
PRIME),
/*intermediate_value/cpu/decode/opcode_range_check/bit_9*/ mload(0x2500),
PRIME)),
PRIME)
mstore(0x2520, val)
}
{
// cpu/decode/opcode_range_check/bit_7 = column0_row7 - (column0_row8 + column0_row8).
let val := addmod(
/*column0_row7*/ mload(0x640),
sub(
PRIME,
addmod(/*column0_row8*/ mload(0x660), /*column0_row8*/ mload(0x660), PRIME)),
PRIME)
mstore(0x2540, val)
}
{
// cpu/decode/opcode_range_check/bit_8 = column0_row8 - (column0_row9 + column0_row9).
let val := addmod(
/*column0_row8*/ mload(0x660),
sub(
PRIME,
addmod(/*column0_row9*/ mload(0x680), /*column0_row9*/ mload(0x680), PRIME)),
PRIME)
mstore(0x2560, val)
}
{
// cpu/decode/flag_pc_update_regular_0 = 1 - (cpu__decode__opcode_range_check__bit_7 + cpu__decode__opcode_range_check__bit_8 + cpu__decode__opcode_range_check__bit_9).
let val := addmod(
1,
sub(
PRIME,
addmod(
addmod(
/*intermediate_value/cpu/decode/opcode_range_check/bit_7*/ mload(0x2540),
/*intermediate_value/cpu/decode/opcode_range_check/bit_8*/ mload(0x2560),
PRIME),
/*intermediate_value/cpu/decode/opcode_range_check/bit_9*/ mload(0x2500),
PRIME)),
PRIME)
mstore(0x2580, val)
}
{
// cpu/decode/opcode_range_check/bit_12 = column0_row12 - (column0_row13 + column0_row13).
let val := addmod(
/*column0_row12*/ mload(0x6e0),
sub(
PRIME,
addmod(/*column0_row13*/ mload(0x700), /*column0_row13*/ mload(0x700), PRIME)),
PRIME)
mstore(0x25a0, val)
}
{
// cpu/decode/opcode_range_check/bit_13 = column0_row13 - (column0_row14 + column0_row14).
let val := addmod(
/*column0_row13*/ mload(0x700),
sub(
PRIME,
addmod(/*column0_row14*/ mload(0x720), /*column0_row14*/ mload(0x720), PRIME)),
PRIME)
mstore(0x25c0, val)
}
{
// cpu/decode/fp_update_regular_0 = 1 - (cpu__decode__opcode_range_check__bit_12 + cpu__decode__opcode_range_check__bit_13).
let val := addmod(
1,
sub(
PRIME,
addmod(
/*intermediate_value/cpu/decode/opcode_range_check/bit_12*/ mload(0x25a0),
/*intermediate_value/cpu/decode/opcode_range_check/bit_13*/ mload(0x25c0),
PRIME)),
PRIME)
mstore(0x25e0, val)
}
{
// cpu/decode/opcode_range_check/bit_1 = column0_row1 - (column0_row2 + column0_row2).
let val := addmod(
/*column0_row1*/ mload(0x580),
sub(
PRIME,
addmod(/*column0_row2*/ mload(0x5a0), /*column0_row2*/ mload(0x5a0), PRIME)),
PRIME)
mstore(0x2600, val)
}
{
// npc_reg_0 = column17_row0 + cpu__decode__opcode_range_check__bit_2 + 1.
let val := addmod(
addmod(
/*column17_row0*/ mload(0x1160),
/*intermediate_value/cpu/decode/opcode_range_check/bit_2*/ mload(0x2440),
PRIME),
1,
PRIME)
mstore(0x2620, val)
}
{
// cpu/decode/opcode_range_check/bit_10 = column0_row10 - (column0_row11 + column0_row11).
let val := addmod(
/*column0_row10*/ mload(0x6a0),
sub(
PRIME,
addmod(/*column0_row11*/ mload(0x6c0), /*column0_row11*/ mload(0x6c0), PRIME)),
PRIME)
mstore(0x2640, val)
}
{
// cpu/decode/opcode_range_check/bit_11 = column0_row11 - (column0_row12 + column0_row12).
let val := addmod(
/*column0_row11*/ mload(0x6c0),
sub(
PRIME,
addmod(/*column0_row12*/ mload(0x6e0), /*column0_row12*/ mload(0x6e0), PRIME)),
PRIME)
mstore(0x2660, val)
}
{
// cpu/decode/opcode_range_check/bit_14 = column0_row14 - (column0_row15 + column0_row15).
let val := addmod(
/*column0_row14*/ mload(0x720),
sub(
PRIME,
addmod(/*column0_row15*/ mload(0x740), /*column0_row15*/ mload(0x740), PRIME)),
PRIME)
mstore(0x2680, val)
}
{
// memory/address_diff_0 = column18_row2 - column18_row0.
let val := addmod(/*column18_row2*/ mload(0x1720), sub(PRIME, /*column18_row0*/ mload(0x16e0)), PRIME)
mstore(0x26a0, val)
}
{
// range_check16/diff_0 = column19_row6 - column19_row2.
let val := addmod(/*column19_row6*/ mload(0x1820), sub(PRIME, /*column19_row2*/ mload(0x17a0)), PRIME)
mstore(0x26c0, val)
}
{
// pedersen/hash0/ec_subset_sum/bit_0 = column3_row0 - (column3_row1 + column3_row1).
let val := addmod(
/*column3_row0*/ mload(0x880),
sub(
PRIME,
addmod(/*column3_row1*/ mload(0x8a0), /*column3_row1*/ mload(0x8a0), PRIME)),
PRIME)
mstore(0x26e0, val)
}
{
// pedersen/hash0/ec_subset_sum/bit_neg_0 = 1 - pedersen__hash0__ec_subset_sum__bit_0.
let val := addmod(
1,
sub(PRIME, /*intermediate_value/pedersen/hash0/ec_subset_sum/bit_0*/ mload(0x26e0)),
PRIME)
mstore(0x2700, val)
}
{
// pedersen/hash1/ec_subset_sum/bit_0 = column6_row0 - (column6_row1 + column6_row1).
let val := addmod(
/*column6_row0*/ mload(0xac0),
sub(
PRIME,
addmod(/*column6_row1*/ mload(0xae0), /*column6_row1*/ mload(0xae0), PRIME)),
PRIME)
mstore(0x2720, val)
}
{
// pedersen/hash1/ec_subset_sum/bit_neg_0 = 1 - pedersen__hash1__ec_subset_sum__bit_0.
let val := addmod(
1,
sub(PRIME, /*intermediate_value/pedersen/hash1/ec_subset_sum/bit_0*/ mload(0x2720)),
PRIME)
mstore(0x2740, val)
}
{
// pedersen/hash2/ec_subset_sum/bit_0 = column9_row0 - (column9_row1 + column9_row1).
let val := addmod(
/*column9_row0*/ mload(0xd00),
sub(
PRIME,
addmod(/*column9_row1*/ mload(0xd20), /*column9_row1*/ mload(0xd20), PRIME)),
PRIME)
mstore(0x2760, val)
}
{
// pedersen/hash2/ec_subset_sum/bit_neg_0 = 1 - pedersen__hash2__ec_subset_sum__bit_0.
let val := addmod(
1,
sub(PRIME, /*intermediate_value/pedersen/hash2/ec_subset_sum/bit_0*/ mload(0x2760)),
PRIME)
mstore(0x2780, val)
}
{
// pedersen/hash3/ec_subset_sum/bit_0 = column12_row0 - (column12_row1 + column12_row1).
let val := addmod(
/*column12_row0*/ mload(0xf40),
sub(
PRIME,
addmod(/*column12_row1*/ mload(0xf60), /*column12_row1*/ mload(0xf60), PRIME)),
PRIME)
mstore(0x27a0, val)
}
{
// pedersen/hash3/ec_subset_sum/bit_neg_0 = 1 - pedersen__hash3__ec_subset_sum__bit_0.
let val := addmod(
1,
sub(PRIME, /*intermediate_value/pedersen/hash3/ec_subset_sum/bit_0*/ mload(0x27a0)),
PRIME)
mstore(0x27c0, val)
}
{
// range_check_builtin/value0_0 = column19_row12.
let val := /*column19_row12*/ mload(0x18c0)
mstore(0x27e0, val)
}
{
// range_check_builtin/value1_0 = range_check_builtin__value0_0 * offset_size + column19_row28.
let val := addmod(
mulmod(
/*intermediate_value/range_check_builtin/value0_0*/ mload(0x27e0),
/*offset_size*/ mload(0xa0),
PRIME),
/*column19_row28*/ mload(0x1980),
PRIME)
mstore(0x2800, val)
}
{
// range_check_builtin/value2_0 = range_check_builtin__value1_0 * offset_size + column19_row44.
let val := addmod(
mulmod(
/*intermediate_value/range_check_builtin/value1_0*/ mload(0x2800),
/*offset_size*/ mload(0xa0),
PRIME),
/*column19_row44*/ mload(0x19c0),
PRIME)
mstore(0x2820, val)
}
{
// range_check_builtin/value3_0 = range_ch
Submitted on: 2025-10-08 10:52:30
Comments
Log in to comment.
No comments yet.