Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/finance/JCurveSmoother.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {Accounting} from "@finance/Accounting.sol";
import {ReceiptToken} from "@tokens/ReceiptToken.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {YieldSharingV2} from "@finance/YieldSharingV2.sol";
/// @notice JCurveSmoother
/// This contract is used to smooth the yield spikes in the system.
/// When a farm has a large yield spike, instead of calling Accounting.accrue(),
/// this contract can be called to self-mint iUSD (bringing back the pending yield to 0),
/// and the iUSD held on this contract can then be periodically burnt, which will in turn
/// increase the pending yield over the interpolation period.
/// @dev this contract requires RECEIPT_TOKEN_MINTER and RECEIPT_TOKEN_BURNER roles.
/// @dev this naive interpolation logic can push (1-1/N)**N ~= 36% of the rewards to after
/// the interpolation period, if the accrueAndSmooth() function is called N times repeatedly
/// during the interpolation period. This was nevertheless chosen for code simplicity instead
/// of a piecewise linear interpolation of rewards whose gas cost would scale linearly with
/// the number of pending distributions.
contract JCurveSmoother is CoreControlled {
using FixedPointMathLib for uint256;
event InterpolationDurationUpdated(uint256 indexed timestamp, uint256 duration);
event JCurveAccrued(uint256 indexed timestamp, uint256 amount);
event JCurveDistribution(uint256 indexed timestamp, uint256 amount);
/// @notice reference to the farm registry
address public immutable accounting;
/// @notice reference to the receipt token
address public immutable receiptToken;
/// @notice reference to the yield sharing contract
address public immutable yieldSharing;
/// @notice interpolation duration of jcurve
uint256 public interpolationDuration = 14 days;
struct Point {
uint32 lastAccrued;
uint32 lastClaimed;
uint208 rate; // distribution per second, scaled with 18 additional decimals
}
/// @notice point used for interpolating rewards of the staked users
Point public point = Point({lastAccrued: uint32(block.timestamp), lastClaimed: uint32(block.timestamp), rate: 0});
constructor(address _core, address _accounting, address _receiptToken, address _yieldSharing)
CoreControlled(_core)
{
accounting = _accounting;
receiptToken = _receiptToken;
yieldSharing = _yieldSharing;
emit InterpolationDurationUpdated(block.timestamp, interpolationDuration);
}
/// @notice set the interpolation duration of the jcurve rewards
/// @dev Note that the rate of distribution will only change after the next distribute() call
/// that is distributing a non-zero amount of rewards.
function setInterpolationDuration(uint256 _duration) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
interpolationDuration = _duration;
emit InterpolationDurationUpdated(block.timestamp, _duration);
}
/// @notice Accrue yield by self-minting iUSD and bringing back pending yield to 0
/// @dev this function can only be called by the FARM_SWAP_CALLER, who is the role most
/// likely to trigger spikes in assets() reported within the system because it is performing
/// token conversions within farms.
/// @param _accrue whether to accrue the yield to the yield sharing contract
/// @param _maxYield the maximum amount of yield that should not go through smoothing
function accrueAndSmooth(bool _accrue, uint256 _maxYield)
external
whenNotPaused
onlyCoreRole(CoreRoles.FARM_SWAP_CALLER)
{
distribute(false);
/// @dev unaccruedYield returns a number of iUSD to mint or burn upon
/// the next profit or loss distribution, so the unit is already correct.
int256 unaccruedYield = YieldSharingV2(yieldSharing).unaccruedYield();
// in case of losses, no smoothing is needed
if (unaccruedYield > 0) {
// amount of yield that should not go through smoothing
uint256 yieldToSmooth = uint256(unaccruedYield) - Math.min(uint256(unaccruedYield), _maxYield);
// self-mint iUSD to increase totalSupply() & bring back pending yield to 0
ReceiptToken(receiptToken).mint(address(this), yieldToSmooth);
// update the interpolation rate with the new balance
point.rate = uint208(vesting() * FixedPointMathLib.WAD / interpolationDuration);
point.lastAccrued = uint32(block.timestamp);
emit JCurveAccrued(block.timestamp, yieldToSmooth);
}
if (_accrue) {
YieldSharingV2(yieldSharing).accrue();
}
}
/// @notice Number of jcurve rewards interpolating
function vesting() public view returns (uint256) {
return ReceiptToken(receiptToken).balanceOf(address(this));
}
/// @notice Number of jcurve rewards available to distribute right now
function vested() public view returns (uint256) {
uint256 _vesting = vesting();
if (_vesting == 0) return 0;
uint256 maxTs = Math.max(point.lastAccrued, point.lastClaimed);
return Math.min(_vesting, uint256(point.rate) * (block.timestamp - maxTs) / FixedPointMathLib.WAD);
}
/// @notice Distribute the vested jcurve rewards (burn escrowed iUSD)
function distribute(bool _accrue) public {
uint256 _vested = vested();
point.lastClaimed = uint32(block.timestamp);
if (_vested != 0) {
ReceiptToken(receiptToken).burn(_vested);
emit JCurveDistribution(block.timestamp, _vested);
}
if (_accrue) {
YieldSharingV2(yieldSharing).accrue();
}
}
}
"
},
"lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
"
},
"lib/solmate/src/utils/FixedPointMathLib.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant MAX_UINT256 = 2**256 - 1;
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// Divide x * y by the denominator.
z := div(mul(x, y), denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// If x * y modulo the denominator is strictly greater than 0,
// 1 is added to round up the division of x * y by the denominator.
z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Mod x by y. Note this will return
// 0 instead of reverting if y is zero.
z := mod(x, y)
}
}
function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Divide x by y. Note this will return
// 0 instead of reverting if y is zero.
r := div(x, y)
}
}
function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Add 1 to x * y if x % y > 0. Note this will
// return 0 instead of reverting if y is zero.
z := add(gt(mod(x, y), 0), div(x, y))
}
}
}
"
},
"src/libraries/CoreRoles.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
/// @notice Holds a complete list of all roles which can be held by contracts inside the InfiniFi protocol.
library CoreRoles {
/// ----------- Core roles for access control --------------
/// @notice the all-powerful role. Controls all other roles and protocol functionality.
bytes32 internal constant GOVERNOR = keccak256("GOVERNOR");
/// @notice Can pause contracts in an emergency.
bytes32 internal constant PAUSE = keccak256("PAUSE");
/// @notice Can unpause contracts after an emergency.
bytes32 internal constant UNPAUSE = keccak256("UNPAUSE");
/// @notice can tweak protocol parameters
bytes32 internal constant PROTOCOL_PARAMETERS = keccak256("PROTOCOL_PARAMETERS");
/// @notice can manage minor roles
bytes32 internal constant MINOR_ROLES_MANAGER = keccak256("MINOR_ROLES_MANAGER");
/// ----------- User Flow Management -----------------------
/// @notice Granted to the user entry point of the system
bytes32 internal constant ENTRY_POINT = keccak256("ENTRY_POINT");
/// ----------- Token Management ---------------------------
/// @notice can mint DebtToken arbitrarily
bytes32 internal constant RECEIPT_TOKEN_MINTER = keccak256("RECEIPT_TOKEN_MINTER");
/// @notice can burn DebtToken tokens
bytes32 internal constant RECEIPT_TOKEN_BURNER = keccak256("RECEIPT_TOKEN_BURNER");
/// @notice can mint arbitrarily & burn held LockedPositionToken
bytes32 internal constant LOCKED_TOKEN_MANAGER = keccak256("LOCKED_TOKEN_MANAGER");
/// @notice can prevent transfers of LockedPositionToken
bytes32 internal constant TRANSFER_RESTRICTOR = keccak256("TRANSFER_RESTRICTOR");
/// ----------- Funds Management & Accounting --------------
/// @notice contract that can allocate funds between farms
bytes32 internal constant FARM_MANAGER = keccak256("FARM_MANAGER");
/// @notice addresses who can use the manual rebalancer
bytes32 internal constant MANUAL_REBALANCER = keccak256("MANUAL_REBALANCER");
/// @notice addresses who can use the periodic rebalancer
bytes32 internal constant PERIODIC_REBALANCER = keccak256("PERIODIC_REBALANCER");
/// @notice addresses who can move funds from farms to a safe address
bytes32 internal constant EMERGENCY_WITHDRAWAL = keccak256("EMERGENCY_WITHDRAWAL");
/// @notice addresses who can trigger swaps in Farms
bytes32 internal constant FARM_SWAP_CALLER = keccak256("FARM_SWAP_CALLER");
/// @notice can set oracles references within the system
bytes32 internal constant ORACLE_MANAGER = keccak256("ORACLE_MANAGER");
/// @notice trusted to report profit and losses in the system.
/// This role can be used to slash depositors in case of losses, and
/// can also deposit profits for distribution to end users.
bytes32 internal constant FINANCE_MANAGER = keccak256("FINANCE_MANAGER");
/// ----------- Timelock management ------------------------
/// The hashes are the same as OpenZeppelins's roles in TimelockController
/// @notice can propose new actions in timelocks
bytes32 internal constant PROPOSER_ROLE = keccak256("PROPOSER_ROLE");
/// @notice can execute actions in timelocks after their delay
bytes32 internal constant EXECUTOR_ROLE = keccak256("EXECUTOR_ROLE");
/// @notice can cancel actions in timelocks
bytes32 internal constant CANCELLER_ROLE = keccak256("CANCELLER_ROLE");
}
"
},
"src/finance/Accounting.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";
import {IFarm} from "@interfaces/IFarm.sol";
import {IOracle} from "@interfaces/IOracle.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {FarmRegistry} from "@integrations/FarmRegistry.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {FixedPriceOracle} from "@finance/oracles/FixedPriceOracle.sol";
/// @notice InfiniFi Accounting contract
contract Accounting is CoreControlled {
using FixedPointMathLib for uint256;
event PriceSet(uint256 indexed timestamp, address indexed asset, uint256 price);
event OracleSet(uint256 indexed timestamp, address indexed asset, address oracle);
/// @notice reference to the farm registry
address public immutable farmRegistry;
constructor(address _core, address _farmRegistry) CoreControlled(_core) {
farmRegistry = _farmRegistry;
}
/// @notice mapping from asset to oracle
mapping(address => address) public oracle;
/// @notice returns the price of an asset
function price(address _asset) external view returns (uint256) {
return IOracle(oracle[_asset]).price();
}
/// @notice set the oracle for an asset
function setOracle(address _asset, address _oracle) external onlyCoreRole(CoreRoles.ORACLE_MANAGER) {
oracle[_asset] = _oracle;
emit OracleSet(block.timestamp, _asset, _oracle);
}
/// -------------------------------------------------------------------------------------------
/// Reference token getters (e.g. USD for iUSD, ETH for iETH, ...)
/// @dev note that the "USD" token does not exist, it is just an abstract unit of account
/// used in the protocol to represent stablecoins pegged to USD, that allows to uniformly
/// account for a diverse reserve composed of USDC, DAI, FRAX, etc.
/// -------------------------------------------------------------------------------------------
/// @notice returns the sum of the value of all assets held on protocol contracts listed in the farm registry.
function totalAssetsValue() external view returns (uint256 _totalValue) {
address[] memory assets = FarmRegistry(farmRegistry).getEnabledAssets();
for (uint256 i = 0; i < assets.length; i++) {
uint256 assetPrice = IOracle(oracle[assets[i]]).price();
uint256 _assets = _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetFarms(assets[i]));
_totalValue += _assets.mulWadDown(assetPrice);
}
}
/// @notice returns the sum of the value of all liquid assets held on protocol contracts listed in the farm registry.
/// @dev see totalAssetsValue()
function totalAssetsValueOf(uint256 _type) external view returns (uint256 _totalValue) {
address[] memory assets = FarmRegistry(farmRegistry).getEnabledAssets();
for (uint256 i = 0; i < assets.length; i++) {
uint256 assetPrice = IOracle(oracle[assets[i]]).price();
address[] memory assetFarms = FarmRegistry(farmRegistry).getAssetTypeFarms(assets[i], uint256(_type));
uint256 _assets = _calculateTotalAssets(assetFarms);
_totalValue += _assets.mulWadDown(assetPrice);
}
}
/// -------------------------------------------------------------------------------------------
/// Specific asset getters (e.g. USDC, DAI, ...)
/// -------------------------------------------------------------------------------------------
/// @notice returns the sum of the balance of all farms of a given asset.
function totalAssets(address _asset) external view returns (uint256) {
return _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetFarms(_asset));
}
function totalAssetsOf(address _asset, uint256 _type) external view returns (uint256) {
return _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetTypeFarms(_asset, uint256(_type)));
}
/// -------------------------------------------------------------------------------------------
/// Internal helpers
/// -------------------------------------------------------------------------------------------
function _calculateTotalAssets(address[] memory _farms) internal view returns (uint256 _totalAssets) {
uint256 length = _farms.length;
for (uint256 index = 0; index < length; index++) {
_totalAssets += IFarm(_farms[index]).assets();
}
}
}
"
},
"src/tokens/ReceiptToken.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
/// @notice InfiniFi Receipt Token.
contract ReceiptToken is CoreControlled, ERC20Permit, ERC20Burnable {
constructor(address _core, string memory _name, string memory _symbol)
CoreControlled(_core)
ERC20(_name, _symbol)
ERC20Permit(_name)
{}
/// ---------------------------------------------------------------------------
/// Supply management
/// ---------------------------------------------------------------------------
function mint(address _to, uint256 _amount) external onlyCoreRole(CoreRoles.RECEIPT_TOKEN_MINTER) {
_mint(_to, _amount);
}
function burn(uint256 _value) public override onlyCoreRole(CoreRoles.RECEIPT_TOKEN_BURNER) {
_burn(_msgSender(), _value);
}
function burnFrom(address _account, uint256 _value) public override onlyCoreRole(CoreRoles.RECEIPT_TOKEN_BURNER) {
_spendAllowance(_account, _msgSender(), _value);
_burn(_account, _value);
}
}
"
},
"src/core/CoreControlled.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {InfiniFiCore} from "@core/InfiniFiCore.sol";
/// @notice Defines some modifiers and utilities around interacting with Core
abstract contract CoreControlled is Pausable {
error UnderlyingCallReverted(bytes returnData);
/// @notice emitted when the reference to core is updated
event CoreUpdate(address indexed oldCore, address indexed newCore);
/// @notice reference to Core
InfiniFiCore private _core;
constructor(address coreAddress) {
_core = InfiniFiCore(coreAddress);
}
/// @notice named onlyCoreRole to prevent collision with OZ onlyRole modifier
modifier onlyCoreRole(bytes32 role) {
require(_core.hasRole(role, msg.sender), "UNAUTHORIZED");
_;
}
/// @notice address of the Core contract referenced
function core() public view returns (InfiniFiCore) {
return _core;
}
/// @notice WARNING CALLING THIS FUNCTION CAN POTENTIALLY
/// BRICK A CONTRACT IF CORE IS SET INCORRECTLY
/// @notice set new reference to core
/// only callable by governor
/// @param newCore to reference
function setCore(address newCore) external onlyCoreRole(CoreRoles.GOVERNOR) {
_setCore(newCore);
}
/// @notice WARNING CALLING THIS FUNCTION CAN POTENTIALLY
/// BRICK A CONTRACT IF CORE IS SET INCORRECTLY
/// @notice set new reference to core
/// @param newCore to reference
function _setCore(address newCore) internal {
address oldCore = address(_core);
_core = InfiniFiCore(newCore);
emit CoreUpdate(oldCore, newCore);
}
/// @notice set pausable methods to paused
function pause() public onlyCoreRole(CoreRoles.PAUSE) {
_pause();
}
/// @notice set pausable methods to unpaused
function unpause() public onlyCoreRole(CoreRoles.UNPAUSE) {
_unpause();
}
/// ------------------------------------------
/// ------------ Emergency Action ------------
/// ------------------------------------------
/// inspired by MakerDAO Multicall:
/// https://github.com/makerdao/multicall/blob/master/src/Multicall.sol
/// @notice struct to pack calldata and targets for an emergency action
struct Call {
/// @notice target address to call
address target;
/// @notice amount of eth to send with the call
uint256 value;
/// @notice payload to send to target
bytes callData;
}
/// @notice due to inflexibility of current smart contracts,
/// add this ability to be able to execute arbitrary calldata
/// against arbitrary addresses.
/// callable only by governor
function emergencyAction(Call[] calldata calls)
external
payable
virtual
onlyCoreRole(CoreRoles.GOVERNOR)
returns (bytes[] memory returnData)
{
returnData = new bytes[](calls.length);
for (uint256 i = 0; i < calls.length; i++) {
address payable target = payable(calls[i].target);
uint256 value = calls[i].value;
bytes calldata callData = calls[i].callData;
(bool success, bytes memory returned) = target.call{value: value}(callData);
require(success, UnderlyingCallReverted(returned));
returnData[i] = returned;
}
}
}
"
},
"src/finance/YieldSharingV2.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {Accounting} from "@finance/Accounting.sol";
import {StakedToken} from "@tokens/StakedToken.sol";
import {ReceiptToken} from "@tokens/ReceiptToken.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {LockingController} from "@locking/LockingController.sol";
import {FixedPriceOracle} from "@finance/oracles/FixedPriceOracle.sol";
/// @dev Escrow of interpolating rewards, owned by the YieldSharing contract.
/// the iUSD interpolated need to sit on another address (hence the escrow), because
/// all iUSD held by the YieldSharing contract are considered to be part of the safety buffer.
contract YieldVestingEscrow is Ownable {
constructor() Ownable(msg.sender) {}
function send(address _token, address _to, uint256 _amount) external onlyOwner {
ReceiptToken(_token).transfer(_to, _amount);
}
}
/// @notice InfiniFi YieldSharing contract
/// @dev This contract is used to distribute yield between iUSD locking users and siUSD holders.
/// @dev It also holds idle iUSD that can be used to slash losses or distribute profits.
/// @dev This V2 interpolates yield over a configurable duration for the staked token, and airdrops iUSD to the vault
/// instead of calling depositRewards(). This allows for interpolation of yield for liquid depositors over a configurable
/// duration instead of a full epoch (7 days), which is more robust when the protocol's TVL is growing steadily and dilutes
/// less the rewards of liquid depositors.
contract YieldSharingV2 is CoreControlled {
using FixedPointMathLib for uint256;
error PerformanceFeeTooHigh(uint256 _percent);
error PerformanceFeeRecipientIsZeroAddress(address _recipient);
error TargetIlliquidRatioTooHigh(uint256 _ratio);
error StakedTokenNotAvailable();
/// @notice Fired when yield is accrued from frarms
/// @param timestamp bl
Submitted on: 2025-10-08 12:50:57
Comments
Log in to comment.
No comments yet.