JCurveSmoother

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/finance/JCurveSmoother.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";

import {CoreRoles} from "@libraries/CoreRoles.sol";
import {Accounting} from "@finance/Accounting.sol";
import {ReceiptToken} from "@tokens/ReceiptToken.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {YieldSharingV2} from "@finance/YieldSharingV2.sol";

/// @notice JCurveSmoother
/// This contract is used to smooth the yield spikes in the system.
/// When a farm has a large yield spike, instead of calling Accounting.accrue(),
/// this contract can be called to self-mint iUSD (bringing back the pending yield to 0),
/// and the iUSD held on this contract can then be periodically burnt, which will in turn
/// increase the pending yield over the interpolation period.
/// @dev this contract requires RECEIPT_TOKEN_MINTER and RECEIPT_TOKEN_BURNER roles.
/// @dev this naive interpolation logic can push (1-1/N)**N ~= 36% of the rewards to after
/// the interpolation period, if the accrueAndSmooth() function is called N times repeatedly
/// during the interpolation period. This was nevertheless chosen for code simplicity instead
/// of a piecewise linear interpolation of rewards whose gas cost would scale linearly with
/// the number of pending distributions.
contract JCurveSmoother is CoreControlled {
    using FixedPointMathLib for uint256;

    event InterpolationDurationUpdated(uint256 indexed timestamp, uint256 duration);
    event JCurveAccrued(uint256 indexed timestamp, uint256 amount);
    event JCurveDistribution(uint256 indexed timestamp, uint256 amount);

    /// @notice reference to the farm registry
    address public immutable accounting;
    /// @notice reference to the receipt token
    address public immutable receiptToken;
    /// @notice reference to the yield sharing contract
    address public immutable yieldSharing;

    /// @notice interpolation duration of jcurve
    uint256 public interpolationDuration = 14 days;

    struct Point {
        uint32 lastAccrued;
        uint32 lastClaimed;
        uint208 rate; // distribution per second, scaled with 18 additional decimals
    }

    /// @notice point used for interpolating rewards of the staked users
    Point public point = Point({lastAccrued: uint32(block.timestamp), lastClaimed: uint32(block.timestamp), rate: 0});

    constructor(address _core, address _accounting, address _receiptToken, address _yieldSharing)
        CoreControlled(_core)
    {
        accounting = _accounting;
        receiptToken = _receiptToken;
        yieldSharing = _yieldSharing;
        emit InterpolationDurationUpdated(block.timestamp, interpolationDuration);
    }

    /// @notice set the interpolation duration of the jcurve rewards
    /// @dev Note that the rate of distribution will only change after the next distribute() call
    /// that is distributing a non-zero amount of rewards.
    function setInterpolationDuration(uint256 _duration) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
        interpolationDuration = _duration;

        emit InterpolationDurationUpdated(block.timestamp, _duration);
    }

    /// @notice Accrue yield by self-minting iUSD and bringing back pending yield to 0
    /// @dev this function can only be called by the FARM_SWAP_CALLER, who is the role most
    /// likely to trigger spikes in assets() reported within the system because it is performing
    /// token conversions within farms.
    /// @param _accrue whether to accrue the yield to the yield sharing contract
    /// @param _maxYield the maximum amount of yield that should not go through smoothing
    function accrueAndSmooth(bool _accrue, uint256 _maxYield)
        external
        whenNotPaused
        onlyCoreRole(CoreRoles.FARM_SWAP_CALLER)
    {
        distribute(false);

        /// @dev unaccruedYield returns a number of iUSD to mint or burn upon
        /// the next profit or loss distribution, so the unit is already correct.
        int256 unaccruedYield = YieldSharingV2(yieldSharing).unaccruedYield();

        // in case of losses, no smoothing is needed
        if (unaccruedYield > 0) {
            // amount of yield that should not go through smoothing
            uint256 yieldToSmooth = uint256(unaccruedYield) - Math.min(uint256(unaccruedYield), _maxYield);

            // self-mint iUSD to increase totalSupply() & bring back pending yield to 0
            ReceiptToken(receiptToken).mint(address(this), yieldToSmooth);

            // update the interpolation rate with the new balance
            point.rate = uint208(vesting() * FixedPointMathLib.WAD / interpolationDuration);
            point.lastAccrued = uint32(block.timestamp);

            emit JCurveAccrued(block.timestamp, yieldToSmooth);
        }

        if (_accrue) {
            YieldSharingV2(yieldSharing).accrue();
        }
    }

    /// @notice Number of jcurve rewards interpolating
    function vesting() public view returns (uint256) {
        return ReceiptToken(receiptToken).balanceOf(address(this));
    }

    /// @notice Number of jcurve rewards available to distribute right now
    function vested() public view returns (uint256) {
        uint256 _vesting = vesting();
        if (_vesting == 0) return 0;

        uint256 maxTs = Math.max(point.lastAccrued, point.lastClaimed);
        return Math.min(_vesting, uint256(point.rate) * (block.timestamp - maxTs) / FixedPointMathLib.WAD);
    }

    /// @notice Distribute the vested jcurve rewards (burn escrowed iUSD)
    function distribute(bool _accrue) public {
        uint256 _vested = vested();
        point.lastClaimed = uint32(block.timestamp);
        if (_vested != 0) {
            ReceiptToken(receiptToken).burn(_vested);
            emit JCurveDistribution(block.timestamp, _vested);
        }

        if (_accrue) {
            YieldSharingV2(yieldSharing).accrue();
        }
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "lib/solmate/src/utils/FixedPointMathLib.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant MAX_UINT256 = 2**256 - 1;

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // Divide x * y by the denominator.
            z := div(mul(x, y), denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // If x * y modulo the denominator is strictly greater than 0,
            // 1 is added to round up the division of x * y by the denominator.
            z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Mod x by y. Note this will return
            // 0 instead of reverting if y is zero.
            z := mod(x, y)
        }
    }

    function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Divide x by y. Note this will return
            // 0 instead of reverting if y is zero.
            r := div(x, y)
        }
    }

    function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Add 1 to x * y if x % y > 0. Note this will
            // return 0 instead of reverting if y is zero.
            z := add(gt(mod(x, y), 0), div(x, y))
        }
    }
}
"
    },
    "src/libraries/CoreRoles.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/// @notice Holds a complete list of all roles which can be held by contracts inside the InfiniFi protocol.
library CoreRoles {
    /// ----------- Core roles for access control --------------

    /// @notice the all-powerful role. Controls all other roles and protocol functionality.
    bytes32 internal constant GOVERNOR = keccak256("GOVERNOR");

    /// @notice Can pause contracts in an emergency.
    bytes32 internal constant PAUSE = keccak256("PAUSE");

    /// @notice Can unpause contracts after an emergency.
    bytes32 internal constant UNPAUSE = keccak256("UNPAUSE");

    /// @notice can tweak protocol parameters
    bytes32 internal constant PROTOCOL_PARAMETERS = keccak256("PROTOCOL_PARAMETERS");

    /// @notice can manage minor roles
    bytes32 internal constant MINOR_ROLES_MANAGER = keccak256("MINOR_ROLES_MANAGER");

    /// ----------- User Flow Management -----------------------

    /// @notice Granted to the user entry point of the system
    bytes32 internal constant ENTRY_POINT = keccak256("ENTRY_POINT");

    /// ----------- Token Management ---------------------------

    /// @notice can mint DebtToken arbitrarily
    bytes32 internal constant RECEIPT_TOKEN_MINTER = keccak256("RECEIPT_TOKEN_MINTER");

    /// @notice can burn DebtToken tokens
    bytes32 internal constant RECEIPT_TOKEN_BURNER = keccak256("RECEIPT_TOKEN_BURNER");

    /// @notice can mint arbitrarily & burn held LockedPositionToken
    bytes32 internal constant LOCKED_TOKEN_MANAGER = keccak256("LOCKED_TOKEN_MANAGER");

    /// @notice can prevent transfers of LockedPositionToken
    bytes32 internal constant TRANSFER_RESTRICTOR = keccak256("TRANSFER_RESTRICTOR");

    /// ----------- Funds Management & Accounting --------------

    /// @notice contract that can allocate funds between farms
    bytes32 internal constant FARM_MANAGER = keccak256("FARM_MANAGER");

    /// @notice addresses who can use the manual rebalancer
    bytes32 internal constant MANUAL_REBALANCER = keccak256("MANUAL_REBALANCER");

    /// @notice addresses who can use the periodic rebalancer
    bytes32 internal constant PERIODIC_REBALANCER = keccak256("PERIODIC_REBALANCER");

    /// @notice addresses who can move funds from farms to a safe address
    bytes32 internal constant EMERGENCY_WITHDRAWAL = keccak256("EMERGENCY_WITHDRAWAL");

    /// @notice addresses who can trigger swaps in Farms
    bytes32 internal constant FARM_SWAP_CALLER = keccak256("FARM_SWAP_CALLER");

    /// @notice can set oracles references within the system
    bytes32 internal constant ORACLE_MANAGER = keccak256("ORACLE_MANAGER");

    /// @notice trusted to report profit and losses in the system.
    /// This role can be used to slash depositors in case of losses, and
    /// can also deposit profits for distribution to end users.
    bytes32 internal constant FINANCE_MANAGER = keccak256("FINANCE_MANAGER");

    /// ----------- Timelock management ------------------------
    /// The hashes are the same as OpenZeppelins's roles in TimelockController

    /// @notice can propose new actions in timelocks
    bytes32 internal constant PROPOSER_ROLE = keccak256("PROPOSER_ROLE");

    /// @notice can execute actions in timelocks after their delay
    bytes32 internal constant EXECUTOR_ROLE = keccak256("EXECUTOR_ROLE");

    /// @notice can cancel actions in timelocks
    bytes32 internal constant CANCELLER_ROLE = keccak256("CANCELLER_ROLE");
}
"
    },
    "src/finance/Accounting.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";

import {IFarm} from "@interfaces/IFarm.sol";
import {IOracle} from "@interfaces/IOracle.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {FarmRegistry} from "@integrations/FarmRegistry.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {FixedPriceOracle} from "@finance/oracles/FixedPriceOracle.sol";

/// @notice InfiniFi Accounting contract
contract Accounting is CoreControlled {
    using FixedPointMathLib for uint256;

    event PriceSet(uint256 indexed timestamp, address indexed asset, uint256 price);
    event OracleSet(uint256 indexed timestamp, address indexed asset, address oracle);

    /// @notice reference to the farm registry
    address public immutable farmRegistry;

    constructor(address _core, address _farmRegistry) CoreControlled(_core) {
        farmRegistry = _farmRegistry;
    }

    /// @notice mapping from asset to oracle
    mapping(address => address) public oracle;

    /// @notice returns the price of an asset
    function price(address _asset) external view returns (uint256) {
        return IOracle(oracle[_asset]).price();
    }

    /// @notice set the oracle for an asset
    function setOracle(address _asset, address _oracle) external onlyCoreRole(CoreRoles.ORACLE_MANAGER) {
        oracle[_asset] = _oracle;
        emit OracleSet(block.timestamp, _asset, _oracle);
    }

    /// -------------------------------------------------------------------------------------------
    /// Reference token getters (e.g. USD for iUSD, ETH for iETH, ...)
    /// @dev note that the "USD" token does not exist, it is just an abstract unit of account
    /// used in the protocol to represent stablecoins pegged to USD, that allows to uniformly
    /// account for a diverse reserve composed of USDC, DAI, FRAX, etc.
    /// -------------------------------------------------------------------------------------------

    /// @notice returns the sum of the value of all assets held on protocol contracts listed in the farm registry.
    function totalAssetsValue() external view returns (uint256 _totalValue) {
        address[] memory assets = FarmRegistry(farmRegistry).getEnabledAssets();
        for (uint256 i = 0; i < assets.length; i++) {
            uint256 assetPrice = IOracle(oracle[assets[i]]).price();
            uint256 _assets = _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetFarms(assets[i]));
            _totalValue += _assets.mulWadDown(assetPrice);
        }
    }

    /// @notice returns the sum of the value of all liquid assets held on protocol contracts listed in the farm registry.
    /// @dev see totalAssetsValue()
    function totalAssetsValueOf(uint256 _type) external view returns (uint256 _totalValue) {
        address[] memory assets = FarmRegistry(farmRegistry).getEnabledAssets();
        for (uint256 i = 0; i < assets.length; i++) {
            uint256 assetPrice = IOracle(oracle[assets[i]]).price();
            address[] memory assetFarms = FarmRegistry(farmRegistry).getAssetTypeFarms(assets[i], uint256(_type));
            uint256 _assets = _calculateTotalAssets(assetFarms);
            _totalValue += _assets.mulWadDown(assetPrice);
        }
    }

    /// -------------------------------------------------------------------------------------------
    /// Specific asset getters (e.g. USDC, DAI, ...)
    /// -------------------------------------------------------------------------------------------

    /// @notice returns the sum of the balance of all farms of a given asset.
    function totalAssets(address _asset) external view returns (uint256) {
        return _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetFarms(_asset));
    }

    function totalAssetsOf(address _asset, uint256 _type) external view returns (uint256) {
        return _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetTypeFarms(_asset, uint256(_type)));
    }

    /// -------------------------------------------------------------------------------------------
    /// Internal helpers
    /// -------------------------------------------------------------------------------------------

    function _calculateTotalAssets(address[] memory _farms) internal view returns (uint256 _totalAssets) {
        uint256 length = _farms.length;
        for (uint256 index = 0; index < length; index++) {
            _totalAssets += IFarm(_farms[index]).assets();
        }
    }
}
"
    },
    "src/tokens/ReceiptToken.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {CoreControlled} from "@core/CoreControlled.sol";

/// @notice InfiniFi Receipt Token.
contract ReceiptToken is CoreControlled, ERC20Permit, ERC20Burnable {
    constructor(address _core, string memory _name, string memory _symbol)
        CoreControlled(_core)
        ERC20(_name, _symbol)
        ERC20Permit(_name)
    {}

    /// ---------------------------------------------------------------------------
    /// Supply management
    /// ---------------------------------------------------------------------------

    function mint(address _to, uint256 _amount) external onlyCoreRole(CoreRoles.RECEIPT_TOKEN_MINTER) {
        _mint(_to, _amount);
    }

    function burn(uint256 _value) public override onlyCoreRole(CoreRoles.RECEIPT_TOKEN_BURNER) {
        _burn(_msgSender(), _value);
    }

    function burnFrom(address _account, uint256 _value) public override onlyCoreRole(CoreRoles.RECEIPT_TOKEN_BURNER) {
        _spendAllowance(_account, _msgSender(), _value);
        _burn(_account, _value);
    }
}
"
    },
    "src/core/CoreControlled.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {InfiniFiCore} from "@core/InfiniFiCore.sol";

/// @notice Defines some modifiers and utilities around interacting with Core
abstract contract CoreControlled is Pausable {
    error UnderlyingCallReverted(bytes returnData);

    /// @notice emitted when the reference to core is updated
    event CoreUpdate(address indexed oldCore, address indexed newCore);

    /// @notice reference to Core
    InfiniFiCore private _core;

    constructor(address coreAddress) {
        _core = InfiniFiCore(coreAddress);
    }

    /// @notice named onlyCoreRole to prevent collision with OZ onlyRole modifier
    modifier onlyCoreRole(bytes32 role) {
        require(_core.hasRole(role, msg.sender), "UNAUTHORIZED");
        _;
    }

    /// @notice address of the Core contract referenced
    function core() public view returns (InfiniFiCore) {
        return _core;
    }

    /// @notice WARNING CALLING THIS FUNCTION CAN POTENTIALLY
    /// BRICK A CONTRACT IF CORE IS SET INCORRECTLY
    /// @notice set new reference to core
    /// only callable by governor
    /// @param newCore to reference
    function setCore(address newCore) external onlyCoreRole(CoreRoles.GOVERNOR) {
        _setCore(newCore);
    }

    /// @notice WARNING CALLING THIS FUNCTION CAN POTENTIALLY
    /// BRICK A CONTRACT IF CORE IS SET INCORRECTLY
    /// @notice set new reference to core
    /// @param newCore to reference
    function _setCore(address newCore) internal {
        address oldCore = address(_core);
        _core = InfiniFiCore(newCore);

        emit CoreUpdate(oldCore, newCore);
    }

    /// @notice set pausable methods to paused
    function pause() public onlyCoreRole(CoreRoles.PAUSE) {
        _pause();
    }

    /// @notice set pausable methods to unpaused
    function unpause() public onlyCoreRole(CoreRoles.UNPAUSE) {
        _unpause();
    }

    /// ------------------------------------------
    /// ------------ Emergency Action ------------
    /// ------------------------------------------

    /// inspired by MakerDAO Multicall:
    /// https://github.com/makerdao/multicall/blob/master/src/Multicall.sol

    /// @notice struct to pack calldata and targets for an emergency action
    struct Call {
        /// @notice target address to call
        address target;
        /// @notice amount of eth to send with the call
        uint256 value;
        /// @notice payload to send to target
        bytes callData;
    }

    /// @notice due to inflexibility of current smart contracts,
    /// add this ability to be able to execute arbitrary calldata
    /// against arbitrary addresses.
    /// callable only by governor
    function emergencyAction(Call[] calldata calls)
        external
        payable
        virtual
        onlyCoreRole(CoreRoles.GOVERNOR)
        returns (bytes[] memory returnData)
    {
        returnData = new bytes[](calls.length);
        for (uint256 i = 0; i < calls.length; i++) {
            address payable target = payable(calls[i].target);
            uint256 value = calls[i].value;
            bytes calldata callData = calls[i].callData;

            (bool success, bytes memory returned) = target.call{value: value}(callData);
            require(success, UnderlyingCallReverted(returned));
            returnData[i] = returned;
        }
    }
}
"
    },
    "src/finance/YieldSharingV2.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";

import {CoreRoles} from "@libraries/CoreRoles.sol";
import {Accounting} from "@finance/Accounting.sol";
import {StakedToken} from "@tokens/StakedToken.sol";
import {ReceiptToken} from "@tokens/ReceiptToken.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {LockingController} from "@locking/LockingController.sol";
import {FixedPriceOracle} from "@finance/oracles/FixedPriceOracle.sol";

/// @dev Escrow of interpolating rewards, owned by the YieldSharing contract.
/// the iUSD interpolated need to sit on another address (hence the escrow), because
/// all iUSD held by the YieldSharing contract are considered to be part of the safety buffer.
contract YieldVestingEscrow is Ownable {
    constructor() Ownable(msg.sender) {}

    function send(address _token, address _to, uint256 _amount) external onlyOwner {
        ReceiptToken(_token).transfer(_to, _amount);
    }
}

/// @notice InfiniFi YieldSharing contract
/// @dev This contract is used to distribute yield between iUSD locking users and siUSD holders.
/// @dev It also holds idle iUSD that can be used to slash losses or distribute profits.
/// @dev This V2 interpolates yield over a configurable duration for the staked token, and airdrops iUSD to the vault
/// instead of calling depositRewards(). This allows for interpolation of yield for liquid depositors over a configurable
/// duration instead of a full epoch (7 days), which is more robust when the protocol's TVL is growing steadily and dilutes
/// less the rewards of liquid depositors.
contract YieldSharingV2 is CoreControlled {
    using FixedPointMathLib for uint256;

    error PerformanceFeeTooHigh(uint256 _percent);
    error PerformanceFeeRecipientIsZeroAddress(address _recipient);
    error TargetIlliquidRatioTooHigh(uint256 _ratio);
    error StakedTokenNotAvailable();

    /// @notice Fired when yield is accrued from frarms
    /// @param timestamp bl

Tags:
ERC20, ERC165, Multisig, Mintable, Burnable, Pausable, Swap, Liquidity, Staking, Yield, Voting, Timelock, Upgradeable, Multi-Signature, Factory, Oracle|addr:0x3c113de75417352875f7be07b9fc056655eb4021|verified:true|block:23532254|tx:0x8b11fc1a32abcca4e5874d0a7afffd6949d7fc706ccde56c15f0192a358d8cf1|first_check:1759920656

Submitted on: 2025-10-08 12:50:57

Comments

Log in to comment.

No comments yet.