Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/Mazement_ethdrop_2000.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.27;
/*
===============================================================================
Mazement — ERC-721 with Waves/Tranches, Promo Tiers, and USD-Target Pricing
OpenZeppelin v5 (ERC721, ERC2981, Ownable, ReentrancyGuard)
-------------------------------------------------------------------------------
WHAT THIS CONTRACT DOES
- Sequential mints (1..MAX_SUPPLY) across waves (size=500) and tranches (+100).
- Public mint gated by `saleActive` (OFF by default until owner enables).
- Per-wave baseURI (with global fallback), plus filename prefix/extension.
- TokenURI filenames are zero-padded automatically based on MAX_SUPPLY
(e.g., 0001 … 2000), so metadata like mazement_0001.json resolves cleanly.
- Promo for Wave 1: first N free (wallet-capped), next M discounted, then full.
- USD-target price via Chainlink ETH/USD with stale-price protection,
or manual wei pricing toggleable by owner.
- Per-wallet-per-wave mint cap; tranche and wave caps enforced on-chain.
- EIP-2981 royalties (default 2.5% to CREATOR).
- Physical-art lifecycle flags (claimed, shipped, fulfilled).
SECURITY & DESIGN NOTES
- Uses OpenZeppelin v5 primitives (nonReentrant on payable paths and withdraw).
- Oracle path guards stale data; price rounding uses ceil to avoid underpayment.
- State updates occur before external calls; no hidden owner mint in public path.
- Admin setters restricted to `onlyOwner`; clear revert reasons throughout.
DEPLOY & OPERATE
- Deploy with `(initialBaseURI, initialMintPriceWei)`; base URI must include a trailing "/".
- Verify the source on Etherscan after deployment to make the code publicly viewable.
- Flip `setSaleActive(true)` to open minting; use tranche/wave functions to manage supply.
===============================================================================
*/
import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/token/common/ERC2981.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; // ✅ OZ v5 path
import "@chainlink/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol";
/// @title Mazement_Drop1
/// @notice ERC-721 with waves (500 each), tranches (+100), Chainlink USD-target pricing,
/// per-wave baseURI, Wave-1 promo pricing (10 free, next 20 at 25% off),
/// and 1-free-per-wallet guardrail.
/// @custom:version 1.4.0 (adds Wave-1 promo + quotes + per-wallet free cap)
contract Mazement is ERC721, ERC2981, Ownable, ReentrancyGuard {
using Strings for uint256;
// -------- Supply / sale --------
uint256 public constant MAX_SUPPLY = 2000; // total across all waves
uint256 public constant WAVE_SIZE = 500; // each wave = 500
uint256 public constant TRANCHE_SIZE = 100; // tranche step = +100
uint256 private _nextId = 1; // mints 1..MAX_SUPPLY in order
bool public saleActive = false;
// Waves + tranches
uint256 public waveId = 1; // current wave (1-based)
uint256 public trancheId = 1; // sub-release id inside current wave (1-based)
uint256 public releaseCap = TRANCHE_SIZE; // live cumulative mint cap (starts at 100)
// Where this wave starts (in total minted terms)
mapping(uint256 => uint256) public waveStartMinted; // waveId => totalMinted() at wave start
event ReleaseCapUpdated(uint256 oldCap, uint256 newCap);
event WaveAdvanced(uint256 newWaveId, uint256 newReleaseCap);
event TrancheAdvanced(uint256 waveId, uint256 newTrancheId, uint256 newReleaseCap);
event WaveBaseURISet(uint256 indexed wave, string uri);
// Per-wallet cap (resets per wave)
uint256 public maxPerWalletPerWave = 2;
mapping(uint256 => mapping(address => uint256)) public mintedByWave;
event MaxPerWalletPerWaveUpdated(uint256 oldVal, uint256 newVal);
// Manual (fallback) mint price in wei; owner can toggle between oracle/manual
uint256 public mintPriceWei;
// -------- USD-target pricing (via Chainlink) --------
AggregatorV3Interface public ethUsdFeed; // ETH/USD feed (mainnet proxy)
uint256 public usdMintPrice = 200e18; // $200 with 18 decimals
uint256 public maxPriceAge = 2 hours; // reject stale oracle data; changed from 1 hours to 2 hours
bool public useOraclePricing = true; // if false, uses mintPriceWei
event UsdMintPriceUpdated(uint256 oldPrice, uint256 newPrice);
event UseOraclePricingUpdated(bool oldVal, bool newVal);
event MaxPriceAgeUpdated(uint256 oldAge, uint256 newAge);
event PriceFeedUpdated(address oldFeed, address newFeed);
// -------- Metadata --------
string private _baseTokenURI; // fallback base URI (used if wave-specific not set)
string public filenamePrefix = "mazement_";
string public filenameExtension = ".json";
bool public metadataFrozen;
// ✅ Auto pad width for tokenURI filenames
uint8 private _padWidth;
// Per-wave baseURI + token→wave mapping
mapping(uint256 => string) public waveBaseURI; // waveId => baseURI (must include trailing "/")
mapping(uint256 => uint256) public tokenWave; // tokenId => waveId
// -------- Royalties (2.5%) --------
address public constant CREATOR = 0xc646Eb7B990AFC048B7e7C2f60F8f0838ab0411B;
// -------- Physical flags --------
mapping(uint256 => bool) public physicalClaimed;
mapping(uint256 => bool) public physicalShipped;
mapping(uint256 => bool) public physicalFulfilled; // set true when shipped
event PhysicalClaimedSet(uint256 indexed tokenId, bool claimed);
event PhysicalShippedSet(uint256 indexed tokenId, bool shipped);
event PhysicalFulfillmentSet(uint256 indexed tokenId, bool fulfilled);
// === Wave-1 promo pricing (NEW) =========================================
// First 10 mints of promo wave are FREE; next 20 are DISCOUNTED 25%; rest FULL.
bool public promoPricingEnabled = true;
uint256 public promoWaveId = 1; // apply promo to Wave 1 only
uint256 public promoFreeQty = 10; // first 10 are free
uint256 public promoDiscountQty = 20; // next 20 are discounted
uint96 public promoDiscountBps = 2500; // 25% off (buyer pays 75%), bps out of 10_000
// Per-wallet cap for FREE mints in the promo wave (NEW)
uint256 public promoFreePerWallet = 1; // set 0 to disable per-wallet free cap
mapping(uint256 => mapping(address => uint256)) public promoFreeUsed; // waveId => wallet => count
event PromoPricingUpdated(bool enabled, uint256 waveId, uint256 freeQty, uint256 discountQty, uint96 discountBps);
event PromoFreePerWalletUpdated(uint256 oldVal, uint256 newVal);
// ========================================================================
constructor(string memory initialBaseURI, uint256 initialMintPriceWei)
ERC721("Mazement", "MAZE")
Ownable(msg.sender) // If using OZ v4, change to: Ownable()
{
_baseTokenURI = initialBaseURI; // keep trailing "/"
mintPriceWei = initialMintPriceWei; // fallback manual price
_setDefaultRoyalty(CREATOR, 250); // 250 bps = 2.5%
// Chainlink ETH/USD (Ethereum mainnet proxy)
ethUsdFeed = AggregatorV3Interface(0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419);
// >>> Wave 1 bootstrap <<<
waveStartMinted[1] = 0; // minted count at start of wave 1
releaseCap = TRANCHE_SIZE; // first tranche live = 100
// ✅ Compute pad width from MAX_SUPPLY (e.g., 2000 -> 4)
_padWidth = _digits(MAX_SUPPLY);
}
// -------- Views --------
function totalMinted() public view returns (uint256) {
return _nextId - 1;
}
// Remaining of the current wave’s 500 target
function remainingInWave() public view returns (uint256) {
uint256 mintedThisWave = totalMinted() - waveStartMinted[waveId];
if (mintedThisWave >= WAVE_SIZE) return 0;
return WAVE_SIZE - mintedThisWave;
}
// Remaining in the current live tranche (until you open the next +100)
function remainingInTranche() public view returns (uint256) {
uint256 minted = totalMinted();
return minted >= releaseCap ? 0 : (releaseCap - minted);
}
function _baseURI() internal view override returns (string memory) {
return _baseTokenURI;
}
// ✅ Per-wave tokenURI with auto zero-padding up to _padWidth
function tokenURI(uint256 tokenId) public view override returns (string memory) {
_requireOwned(tokenId);
uint256 w = tokenWave[tokenId];
string memory base = bytes(waveBaseURI[w]).length > 0 ? waveBaseURI[w] : _baseTokenURI;
string memory idStr = tokenId.toString();
bytes memory b = bytes(idStr);
if (b.length < _padWidth) {
uint256 zeros = _padWidth - b.length;
bytes memory z = new bytes(zeros);
for (uint256 i = 0; i < zeros; i++) z[i] = bytes1("0");
idStr = string(abi.encodePacked(z, idStr));
}
return string.concat(base, filenamePrefix, idStr, filenameExtension);
}
// --- Oracle-assisted pricing helpers ---
function weiForUSD_(uint256 usdAmount18) internal view returns (uint256) {
require(address(ethUsdFeed) != address(0), "Price feed unset");
(, int256 answer, , uint256 updatedAt, ) = ethUsdFeed.latestRoundData();
require(answer > 0, "Bad price");
require(block.timestamp - updatedAt <= maxPriceAge, "Stale price");
uint8 d = ethUsdFeed.decimals(); // typically 8
// requiredWei = usdAmount18 * 10^d / (ETH/USD), rounded up
return Math.mulDiv(usdAmount18, 10 ** d, uint256(answer), Math.Rounding.Ceil);
}
function currentMintPriceWei() public view returns (uint256) {
return useOraclePricing ? weiForUSD_(usdMintPrice) : mintPriceWei;
}
// === Promo price helpers (NEW) ==========================================
/// @dev Buyer-aware promo price (Wave-scoped): applies free-per-wallet during the FREE window.
function _promoPriceWeiFor(address buyer) internal view returns (uint256) {
// If promo is off or this isn't the promo wave, use full/base price.
if (!promoPricingEnabled || waveId != promoWaveId) {
return currentMintPriceWei();
}
// Position within the current wave (already minted so far).
uint256 mintedThisWave = totalMinted() - waveStartMinted[waveId];
// FREE tier (first promoFreeQty of the wave), gated per wallet if configured
if (mintedThisWave < promoFreeQty) {
bool walletHasFree = (promoFreePerWallet == 0) ||
(promoFreeUsed[waveId][buyer] < promoFreePerWallet);
if (walletHasFree) return 0;
// else: wallet already used its free; fall through to discount/full
}
// DISCOUNT tier (after free, for promoDiscountQty mints)
if (mintedThisWave < promoFreeQty + promoDiscountQty) {
uint256 baseWei = currentMintPriceWei();
return Math.mulDiv(baseWei, 10_000 - promoDiscountBps, 10_000, Math.Rounding.Ceil);
}
// FULL price for the rest
return currentMintPriceWei();
}
/// @notice Price for the *next* mint (any buyer), in wei; and tier code (0=FREE,1=DISCOUNT,2=FULL).
function quoteNextMintPriceWei() external view returns (uint256 priceWei, uint8 tier) {
if (promoPricingEnabled && waveId == promoWaveId) {
uint256 mintedThisWave = totalMinted() - waveStartMinted[waveId];
if (mintedThisWave < promoFreeQty) {
return (0, 0); // FREE (pool not exhausted)
}
if (mintedThisWave < promoFreeQty + promoDiscountQty) {
uint256 baseWei = currentMintPriceWei();
uint256 discountedWei = Math.mulDiv(baseWei, 10_000 - promoDiscountBps, 10_000, Math.Rounding.Ceil);
return (discountedWei, 1); // DISCOUNT
}
}
return (currentMintPriceWei(), 2); // FULL
}
/// @notice Price the given buyer would pay *if they mint next*, in wei; tier code (0=FREE,1=DISCOUNT,2=FULL).
function quoteNextMintPriceWeiFor(address buyer) external view returns (uint256 priceWei, uint8 tier) {
if (promoPricingEnabled && waveId == promoWaveId) {
uint256 mintedThisWave = totalMinted() - waveStartMinted[waveId];
// FREE (buyer has remaining free allocation and global free pool not exhausted)
if (mintedThisWave < promoFreeQty) {
bool walletHasFree = (promoFreePerWallet == 0) ||
(promoFreeUsed[waveId][buyer] < promoFreePerWallet);
if (walletHasFree) return (0, 0);
}
// DISCOUNT window (regardless of wallet's free usage)
if (mintedThisWave < promoFreeQty + promoDiscountQty) {
uint256 baseWei = currentMintPriceWei();
uint256 discountedWei = Math.mulDiv(baseWei, 10_000 - promoDiscountBps, 10_000, Math.Rounding.Ceil);
return (discountedWei, 1);
}
}
return (currentMintPriceWei(), 2);
}
// ========================================================================
// -------- Public mint (wave/tranche gated + per-wallet-per-wave cap) --------
function mint() external payable nonReentrant {
require(saleActive, "Sale inactive");
require(totalMinted() < releaseCap, "Current wave/tranche sold out");
require(mintedByWave[waveId][msg.sender] + 1 <= maxPerWalletPerWave, "Wave wallet cap reached");
// --- price (buyer-aware promo) ---
uint256 required = _promoPriceWeiFor(msg.sender);
require(msg.value == required, "Incorrect ETH");
// --- effects (state before external call) ---
mintedByWave[waveId][msg.sender] += 1;
// If this mint consumed a FREE slot for this wallet in the promo wave, record it.
if (
promoPricingEnabled &&
waveId == promoWaveId &&
required == 0
) {
// Compute position before this mint to confirm we were still inside the free window
uint256 mintedThisWaveBefore = totalMinted() - waveStartMinted[waveId];
if (mintedThisWaveBefore < promoFreeQty && promoFreePerWallet > 0) {
promoFreeUsed[waveId][msg.sender] += 1;
}
}
uint256 tokenId = _nextId++;
tokenWave[tokenId] = waveId;
// Interactions
_safeMint(msg.sender, tokenId);
// (Optional) exact-change refund could be added here if you want to auto-refund overpay.
}
// -------- Owner tools --------
function setPromoPricing(
bool enabled,
uint256 wave,
uint256 freeQty,
uint256 discountQty,
uint96 discountBps_
) external onlyOwner {
require(discountBps_ <= 10_000, "bps > 100%");
promoPricingEnabled = enabled;
promoWaveId = wave;
promoFreeQty = freeQty;
promoDiscountQty = discountQty;
promoDiscountBps = discountBps_;
emit PromoPricingUpdated(enabled, wave, freeQty, discountQty, discountBps_);
}
function setPromoFreePerWallet(uint256 n) external onlyOwner {
emit PromoFreePerWalletUpdated(promoFreePerWallet, n);
promoFreePerWallet = n;
}
function setSaleActive(bool active) external onlyOwner { saleActive = active; }
// Start a NEW WAVE (fixed size = 500). Per-wallet counters reset.
// - newReleaseCap: cumulative cap after opening this wave (must be within this wave’s 500 and aligned to +100)
// - waveURI: optional baseURI for this wave
function startNextWave(uint256 newReleaseCap, string calldata waveURI) external onlyOwner {
require(newReleaseCap > releaseCap, "cap must increase");
require(newReleaseCap <= MAX_SUPPLY, "cap > MAX_SUPPLY");
uint256 prevMinted = totalMinted();
waveId += 1;
trancheId = 1;
waveStartMinted[waveId] = prevMinted;
// must be within this wave’s 500 target, and aligned to 100
uint256 diffFromWaveStart = newReleaseCap - waveStartMinted[waveId];
require(diffFromWaveStart > 0, "cap unchanged");
require(diffFromWaveStart <= WAVE_SIZE, "cap exceeds wave size");
require(diffFromWaveStart % TRANCHE_SIZE == 0, "cap not aligned to 100");
if (bytes(waveURI).length > 0) {
waveBaseURI[waveId] = waveURI; // must include trailing "/"
emit WaveBaseURISet(waveId, waveURI);
}
emit WaveAdvanced(waveId, newReleaseCap);
emit ReleaseCapUpdated(releaseCap, newReleaseCap);
releaseCap = newReleaseCap;
}
// Open the NEXT TRANCHE inside the current wave (+100 exactly)
function openNextTranche() external onlyOwner {
uint256 newReleaseCap = releaseCap + TRANCHE_SIZE;
require(newReleaseCap <= MAX_SUPPLY, "cap > MAX_SUPPLY");
require(newReleaseCap - waveStartMinted[waveId] <= WAVE_SIZE, "cap exceeds wave size");
trancheId += 1;
emit TrancheAdvanced(waveId, trancheId, newReleaseCap);
emit ReleaseCapUpdated(releaseCap, newReleaseCap);
releaseCap = newReleaseCap;
}
// Safety setter (keeps wave & step rules; can jump multiple steps)
function setReleaseCap(uint256 newCap) external onlyOwner {
require(newCap <= MAX_SUPPLY, "cap > MAX_SUPPLY");
require(newCap >= totalMinted(), "cap < already minted");
uint256 diffFromWaveStart = newCap - waveStartMinted[waveId];
require(diffFromWaveStart <= WAVE_SIZE, "cap exceeds wave size");
require(diffFromWaveStart % TRANCHE_SIZE == 0, "cap not aligned to 100");
emit ReleaseCapUpdated(releaseCap, newCap);
releaseCap = newCap;
// keep trancheId consistent with step count (1-based)
uint256 steps = diffFromWaveStart / TRANCHE_SIZE; // 1..5 within a 500 wave
trancheId = steps == 0 ? 1 : steps;
}
// Per-wave baseURI controls
function setWaveBaseURI(uint256 wave, string calldata uri) external onlyOwner {
waveBaseURI[wave] = uri; // must include trailing "/"
emit WaveBaseURISet(wave, uri);
}
// Per-wallet-per-wave limit
function setMaxPerWalletPerWave(uint256 n) external onlyOwner {
emit MaxPerWalletPerWaveUpdated(maxPerWalletPerWave, n);
maxPerWalletPerWave = n;
}
// Manual pricing (fallback)
function setMintPriceWei(uint256 newPriceWei) external onlyOwner { mintPriceWei = newPriceWei; }
// USD target & oracle controls
function setUsdMintPrice(uint256 usdAmount18) external onlyOwner {
emit UsdMintPriceUpdated(usdMintPrice, usdAmount18);
usdMintPrice = usdAmount18;
}
function setUseOraclePricing(bool v) external onlyOwner {
emit UseOraclePricingUpdated(useOraclePricing, v);
useOraclePricing = v;
}
function setMaxPriceAge(uint256 seconds_) external onlyOwner {
emit MaxPriceAgeUpdated(maxPriceAge, seconds_);
maxPriceAge = seconds_;
}
function setPriceFeed(address feed) external onlyOwner {
emit PriceFeedUpdated(address(ethUsdFeed), feed);
ethUsdFeed = AggregatorV3Interface(feed);
}
// Global fallback baseURI
function setBaseURI(string calldata newBaseURI) external onlyOwner {
require(!metadataFrozen, "Metadata frozen");
_baseTokenURI = newBaseURI; // must include trailing "/"
}
function setFilenamePrefix(string calldata p) external onlyOwner {
require(!metadataFrozen, "Metadata frozen");
filenamePrefix = p;
}
function setFilenameExtension(string calldata e) external onlyOwner {
require(!metadataFrozen, "Metadata frozen");
filenameExtension = e;
}
function freezeMetadata() external onlyOwner { metadataFrozen = true; }
// -------- Physical flags setters --------
function setPhysicalClaimed(uint256 tokenId) external onlyOwner {
_requireOwned(tokenId);
require(!physicalClaimed[tokenId], "Already claimed");
physicalClaimed[tokenId] = true;
emit PhysicalClaimedSet(tokenId, true);
}
function setPhysicalShipped(uint256 tokenId) public onlyOwner {
_requireOwned(tokenId);
require(physicalClaimed[tokenId], "Not claimed");
require(!physicalShipped[tokenId], "Already shipped");
physicalShipped[tokenId] = true;
emit PhysicalShippedSet(tokenId, true);
if (!physicalFulfilled[tokenId]) {
physicalFulfilled[tokenId] = true;
emit PhysicalFulfillmentSet(tokenId, true);
}
}
function markFulfilled(uint256 tokenId) external onlyOwner {
setPhysicalShipped(tokenId);
}
/// Withdraw proceeds
function withdraw(address payable to) external onlyOwner nonReentrant {
(bool ok, ) = to.call{value: address(this).balance}("");
require(ok, "Withdraw failed");
}
// ----- EIP-2981 admin -----
function setDefaultRoyalty(address receiver, uint96 feeNumerator) external onlyOwner {
_setDefaultRoyalty(receiver, feeNumerator);
}
function deleteDefaultRoyalty() external onlyOwner { _deleteDefaultRoyalty(); }
// ----- Interface wiring -----
function supportsInterface(bytes4 iid)
public
view
override(ERC721, ERC2981)
returns (bool)
{
return super.supportsInterface(iid);
}
// ===== Helpers =====
function _digits(uint256 n) internal pure returns (uint8 d) {
do { d++; n /= 10; } while (n > 0);
}
}"
},
"@chainlink/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface AggregatorV3Interface {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
function getRoundData(
uint80 _roundId
) external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
function latestRoundData()
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}
"
},
"@openzeppelin/contracts/utils/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
"
},
"@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
"
},
"@openzeppelin/contracts/utils/Strings.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(add(buffer, 0x20), length)
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as
Submitted on: 2025-10-09 09:58:29
Comments
Log in to comment.
No comments yet.