RedeemOperator

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/main/RedeemOperator.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import "../interfaces/IRedeemOperator.sol";
import "../interfaces/IVault.sol";
import "./libraries/Errors.sol";
import "./common/Constants.sol";

/**
 * @title RedeemOperator contract
 * @author Naturelab
 * @notice Manages temporary storage of share tokens and facilitates redemption operations.
 * @dev Implements the IRedeemOperator interface and uses OpenZeppelin libraries for safety and utility functions.
 */
contract RedeemOperator is IRedeemOperator, Constants, Ownable {
    using SafeERC20 for IERC20;
    using Math for uint256;
    using EnumerableSet for EnumerableSet.AddressSet;

    // Used for precise calculations
    uint256 public immutable PRECISION;

    // Address of the vault contract (immutable)
    address public immutable vault;

    // Address of the core token contract (immutable)
    address public immutable asset;

    // Address of the operator managing withdrawals
    address public operator;

    // Address to receive fees
    address public feeReceiver;

    // Mapping to track withdrawal requests
    mapping(address => uint256) private _withdrawalRequest;

    // Set to keep track of pending withdrawers
    EnumerableSet.AddressSet private _pendingWithdrawers;

    modifier onlyVault() {
        if (msg.sender != vault) revert Errors.CallerNotVault();
        _;
    }

    modifier onlyOperator() {
        if (msg.sender != operator) revert Errors.CallerNotOperator();
        _;
    }

    /**
     * @dev Initializes the contract with the vault, operator, fee receiver, and gas parameters.
     * @param _admin Address of the admin.
     * @param _vault Address of the vault contract.
     * @param _asset Address of the core token contract.
     * @param _operator Address of the operator.
     * @param _feeReceiver Address to receive fees.
     */
    constructor(address _admin, address _vault, address _asset, address _operator, address _feeReceiver)
        Ownable(_admin)
    {
        if (_vault == address(0)) revert Errors.InvalidVault();
        if (_asset == address(0)) revert Errors.InvalidAsset();
        if (_operator == address(0)) revert Errors.InvalidNewOperator();
        if (_feeReceiver == address(0)) revert Errors.InvalidFeeReceiver();
        vault = _vault;
        operator = _operator;
        feeReceiver = _feeReceiver;
        asset = _asset;
        PRECISION = IVault(_vault).getPrecison();
    }

    /**
     * @dev Updates the operator address.
     * @param _newOperator New operator address.
     */
    function updateOperator(address _newOperator) external onlyOwner {
        if (_newOperator == address(0)) revert Errors.InvalidNewOperator();
        emit UpdateOperator(operator, _newOperator);
        operator = _newOperator;
    }

    /**
     * @dev Update the address of the recipient for management fees.
     * @param _newFeeReceiver The new address of the recipient for management fees.
     */
    function updateFeeReceiver(address _newFeeReceiver) external onlyOwner {
        if (_newFeeReceiver == address(0)) revert Errors.InvalidFeeReceiver();
        emit UpdateFeeReceiver(feeReceiver, _newFeeReceiver);
        feeReceiver = _newFeeReceiver;
    }

    /**
     * @dev Registers a withdrawal request for a user.
     * @param _user Address of the user requesting withdrawal.
     * @param _shares Amount of shares to withdraw.
     */
    function registerWithdrawal(address _user, uint256 _shares) external onlyVault {
        if (_shares == 0) revert Errors.InvalidShares();

        // Handle existing pending withdrawal
        if (_pendingWithdrawers.contains(_user)) {
            revert Errors.IncorrectState();
        } else {
            // Register new withdrawal request
            _pendingWithdrawers.add(_user);
            _withdrawalRequest[_user] = _shares;
        }

        emit RegisterWithdrawal(_user, _shares);
    }

    /**
     * @dev Returns the withdrawal request details for a user.
     * @param _user Address of the user.
     * @return WithdrawalRequest struct containing the token address and shares amount.
     */
    function withdrawalRequest(address _user) external view returns (uint256) {
        return (_withdrawalRequest[_user]);
    }

    /**
     * @dev Returns the withdrawal request details for multiple users.
     * @param _users Array of user addresses.
     * @return shares_ Array of shares requested for withdrawal.
     */
    function withdrawalRequests(address[] calldata _users) external view returns (uint256[] memory shares_) {
        uint256 count_ = _users.length;
        if (count_ == 0) revert Errors.InvalidLength();

        shares_ = new uint256[](count_);
        for (uint256 i = 0; i < count_; ++i) {
            shares_[i] = _withdrawalRequest[_users[i]];
        }
    }

    /**
     * @dev Returns the number of pending withdrawers.
     * @return Number of pending withdrawers.
     */
    function pendingWithdrawersCount() external view returns (uint256) {
        return _pendingWithdrawers.length();
    }

    /**
     * @dev Returns a paginated list of pending withdrawers.
     * @param _limit Maximum number of addresses to return.
     * @param _offset Offset for pagination.
     * @return result_ Array of addresses of pending withdrawers.
     */
    function pendingWithdrawers(uint256 _limit, uint256 _offset) external view returns (address[] memory result_) {
        uint256 count_ = _pendingWithdrawers.length();
        if (_offset >= count_ || _limit == 0) return result_;

        count_ -= _offset;
        if (count_ > _limit) count_ = _limit;

        result_ = new address[](count_);
        for (uint256 i = 0; i < count_; ++i) {
            result_[i] = _pendingWithdrawers.at(_offset + i);
        }
        return result_;
    }

    /**
     * @dev Returns the list of all pending withdrawers.
     * @return Array of addresses of all pending withdrawers.
     */
    function allPendingWithdrawers() external view returns (address[] memory) {
        return _pendingWithdrawers.values();
    }

    function confirmWithdrawal(address[] memory _users, uint256 _totalGasTokenAmount) external onlyOperator {
        uint256 totalShares_;
        for (uint256 i = 0; i < _users.length; ++i) {
            if (!_pendingWithdrawers.contains(_users[i])) revert Errors.InvalidWithdrawalUser();
            totalShares_ += _withdrawalRequest[_users[i]];
        }
        uint256 exchangePrice_ = IVault(vault).exchangePrice();
        uint256 lastExchangePrice = IVault(vault).lastExchangePrice();
        // if (lastExchangePrice == 0) revert Errors.UnSupportedOperation();

        uint256 cutPercentage_;
        if (exchangePrice_ < lastExchangePrice) {
            cutPercentage_ = (lastExchangePrice - exchangePrice_).mulDiv(
                (IERC20(vault).totalSupply() - totalShares_) * PRECISION,
                totalShares_ * exchangePrice_,
                Math.Rounding.Ceil
            );
        }

        uint256 tokenBalanceBefore_ = IERC20(asset).balanceOf(address(this));
        IVault(vault).optionalRedeem(asset, totalShares_, cutPercentage_, address(this), address(this));
        uint256 tokenBalanceGet_ = IERC20(asset).balanceOf(address(this)) - tokenBalanceBefore_;
        uint256 assetPerShare_ = tokenBalanceGet_.mulDiv(PRECISION, totalShares_, Math.Rounding.Floor);

        address thisUser_;
        uint256 thisUserGet_;
        uint256 gasPerUser_ = _totalGasTokenAmount / _users.length;
        uint256[] memory amounts_ = new uint256[](_users.length);
        for (uint256 i = 0; i < _users.length; ++i) {
            thisUser_ = _users[i];
            thisUserGet_ = _withdrawalRequest[thisUser_].mulDiv(assetPerShare_, PRECISION, Math.Rounding.Floor);
            // If the user's share is not enough to cover the gas, it will fail.
            thisUserGet_ -= gasPerUser_;
            IERC20(asset).safeTransfer(thisUser_, thisUserGet_);
            amounts_[i] = thisUserGet_;
            _pendingWithdrawers.remove(thisUser_);
            delete _withdrawalRequest[thisUser_];
        }
        emit ConfirmWithdrawal(_users, amounts_);

        uint256 totalGas_ = gasPerUser_ * _users.length;
        IERC20(asset).safeTransfer(feeReceiver, totalGas_);
    }

    function _refundWithdrawal(address _user) internal {
        if (!_pendingWithdrawers.contains(_user)) revert Errors.InvalidWithdrawalUser();
        uint256 shares_ = _withdrawalRequest[_user];
        delete _withdrawalRequest[_user];
        _pendingWithdrawers.remove(_user);
        IERC20(vault).safeTransfer(_user, shares_);
    }

    function refundWithdrawals(address[] calldata _users) external onlyOperator {
        for (uint256 i = 0; i < _users.length; ++i) {
            _refundWithdrawal(_users[i]);
        }
    }

    /**
     * @dev Handles accidental transfers of tokens or ETH to this contract.
     * @param _token Address of the token to sweep.
     */
    function sweep(address _token) external onlyOwner {
        uint256 amount_ = IERC20(_token).balanceOf(address(this));
        IERC20(_token).safeTransfer(msg.sender, amount_);

        uint256 ethbalance_ = address(this).balance;
        if (ethbalance_ > 0) {
            Address.sendValue(payable(msg.sender), ethbalance_);
        }

        emit Sweep(_token);
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.0.2/access/Ownable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.0.2/token/ERC20/utils/SafeERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.0.2/utils/structs/EnumerableSet.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.0.2/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "src/interfaces/IRedeemOperator.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;

interface IRedeemOperator {
    // Events for logging actions
    event RegisterWithdrawal(address indexed user, uint256 shares);
    event ConfirmWithdrawal(address[] users, uint256[] amounts);
    event UpdateOperator(address oldOperator, address newOperator);
    event UpdateFeeReceiver(address oldFeeReceiver, address newFeeReceiver);
    event Sweep(address token);

    function registerWithdrawal(address _user, uint256 _shares) external;

    function pendingWithdrawersCount() external view returns (uint256);

    function pendingWithdrawers(uint256 _limit, uint256 _offset) external view returns (address[] memory result_);

    function allPendingWithdrawers() external view returns (address[] memory);

    function confirmWithdrawal(address[] calldata _Users, uint256 _totalGasTokenAmount) external;
}
"
    },
    "src/interfaces/IVault.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;

interface IVault {
    event UpdateMarketCapacity(uint256 oldCapacityLimit, uint256 newCapacityLimit);
    event UpdateManagementFee(uint256 oldManagementFee, uint256 newManagementFee);
    event UpdateManagementFeeClaimPeriod(uint256 oldManagementFeeClaimPeriod, uint256 newManagementFeeClaimPeriod);
    event UpdateMaxPriceUpdatePeriod(uint256 oldMaxPriceUpdatePeriod, uint256 newMaxPriceUpdatePeriod);
    event UpdateRevenueRate(uint256 oldRevenueRate, uint256 newRevenueRate);
    event UpdateExitFeeRate(uint256 oldExitFeeRate, uint256 newExitFeeRate);
    event UpdateRebalancer(address oldRebalancer, address newRebalancer);
    event UpdateUnbackedMinter(address oldUnbackedMinter, address newUnbackedMinter);
    event UpdateFeeReceiver(address oldFeeReceiver, address newFeeReceiver);
    event UpdateRedeemOperator(address oldRedeemOperator, address newRedeemOperator);
    event UpdateExchangePrice(uint256 newExchangePrice, uint256 newRevenue);
    event UpdateminDepositAmount(uint256 oldminDepositAmount, uint256 newminDepositAmount);
    event TransferToStrategy(address token, uint256 amount, uint256 strategyIndex);
    event OptionalDeposit(address caller, address token, uint256 assets, address receiver, address referral);
    event OptionalRedeem(address token, uint256 shares, address receiver, address owner);
    event RequestRedeem(address user, uint256 shares, address token);
    event CollectManagementFee(uint256 assets);
    event CollectRevenue(uint256 revenue);
    event AddToken(address token);
    event RemoveToken(address token);

    /**
     * @dev Parameters for initializing the vault contract.
     * @param underlyingToken The address of the underlying token for the vault.
     * @param name The name of the vault token.
     * @param symbol The symbol of the vault token.
     * @param marketCapacity The maximum market capacity of the vault.
     * @param managementFeeRate The rate of the management fee.
     * @param managementFeeClaimPeriod The period for claiming the management fee.
     * @param maxPriceUpdatePeriod The maximum allowed price update period.
     * @param revenueRate The rate of the revenue fee.
     * @param exitFeeRate The rate of the exit fee.
     * @param admin The address of the administrator.
     * @param rebalancer The address responsible for rebalancing the vault.
     * @param feeReceiver The address that will receive the fees.
     * @param redeemOperator The address of the operator responsible for redeeming shares
     */
    struct VaultParams {
        address underlyingToken;
        string name;
        string symbol;
        uint256 marketCapacity;
        uint256 managementFeeRate;
        uint256 managementFeeClaimPeriod;
        uint256 maxPriceUpdatePeriod;
        uint256 revenueRate;
        uint256 exitFeeRate;
        address admin;
        address rebalancer;
        address feeReceiver;
        address redeemOperator;
    }

    /**
     * @dev
     * @param exchangePrice The exchange rate used during user deposit and withdrawal operations.
     * @param revenueExchangePrice The exchange rate used when calculating performance fees,Performance fees will be recorded when the real exchange rate exceeds this rate.
     * @param revenue Collected revenue, stored in pegged ETH.
     * @param lastClaimMngFeeTime The last time the management fees were charged.
     * @param lastUpdatePriceTime The last time the exchange price was updated.
     */
    struct VaultState {
        uint256 exchangePrice;
        uint256 revenueExchangePrice;
        uint256 revenue;
        uint256 lastClaimMngFeeTime;
        uint256 lastUpdatePriceTime;
    }

    function optionalRedeem(address _token, uint256 _shares, uint256 _cutPercentage, address _receiver, address _owner)
        external
        returns (uint256 assetsAfterFee_);

    function getWithdrawFee(uint256 _amount) external view returns (uint256 amount_);

    function exchangePrice() external view returns (uint256);

    function revenueExchangePrice() external view returns (uint256);

    function revenue() external view returns (uint256);

    function lastExchangePrice() external view returns (uint256);

    function getPrecison() external view returns (uint256);

    function optionalDeposit(address _token, uint256 _assets, address _receiver, address _referral, bytes memory _swapData, uint256 _swapGetMin)
        external
        returns (uint256 shares_);
}
"
    },
    "src/main/libraries/Errors.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;

library Errors {
    // Revert Errors:
    error CallerNotOperator(); // 0xa5523ee5
    error CallerNotRebalancer(); // 0xbd72e291
    error CallerNotVault(); // 0xedd7338f
    error CallerNotMinter(); // 0x5eee367a
    error CallerNotWhiteList(); // 0xf37be7b6
    error DepositAmountTooSmall(); // 0x67627d07
    error ExitFeeRateTooHigh(); // 0xf4d1caab
    error ExceededMaxDeposit(); // 0x3bc9ae09
    error FlashloanInProgress(); // 0x772ac4e8
    error IncorrectState(); // 0x508c9390
    error InfoExpired(); // 0x4ddf4a65
    error InvalidAccount(); // 0x6d187b28
    error InvalidAdapter(); // 0xfbf66df1
    error InvalidAdmin(); // 0xb5eba9f0
    error InvalidAsset(); // 0xc891add2
    error InvalidCaller(); // 0x48f5c3ed
    error InvalidClaimTime(); // 0x1221b97b
    error InvalidFeeReceiver(); // 0xd200485c
    error InvalidFlashloanCall(); // 0xd2208d52
    error InvalidFlashloanHelper(); // 0x8690f016
    error InvalidFlashloanProvider(); // 0xb6b48551
    error InvalidGasLimit(); // 0x98bdb2e0
    error InvalidInitiator(); // 0xbfda1f28
    error InvalidLength(); // 0x947d5a84
    error InvalidLimit(); // 0xe55fb509
    error InvalidManagementFeeClaimPeriod(); // 0x4022e4f6
    error InvalidManagementFeeRate(); // 0x09aa66eb
    error InvalidMarketCapacity(); // 0xc9034604
    error InvalidNetAssets(); // 0x6da79d69
    error InvalidNewOperator(); // 0xba0cdec5
    error InvalidOperator(); // 0xccea9e6f
    error InvalidOracle(); // 0x9589a27d
    error InvalidRebalancer(); // 0xff288a8e
    error InvalidRedeemOperator(); // 0xd214a597
    error InvalidSafeProtocolRatio(); // 0x7c6b23d6
    error InvalidShares(); // 0x6edcc523
    error InvalidTarget(); // 0x82d5d76a
    error InvalidToken(); // 0xc1ab6dc1
    error InvalidTokenId(); // 0x3f6cc768
    error InvalidUnderlyingToken(); // 0x2fb86f96
    error InvalidVault(); // 0xd03a6320
    error InvalidWithdrawalUser(); // 0x36c17319
    error ManagementFeeRateTooHigh(); // 0x09aa66eb
    error ManagementFeeClaimPeriodTooShort(); // 0x4022e4f6
    error MarketCapacityTooLow(); // 0xc9034604
    error MintingInProgress(); // 0x5067ce25
    error NoMintRequest(); // 0x016df84c
    error NoRedeemRequest(); // 0x4ef1d5c5
    error NotSupportedYet(); // 0xfb89ba2a
    error PriceNotUpdated(); // 0x1f4bcb2b
    error PriceUpdatePeriodTooLong(); // 0xe88d3ecb
    error RatioOutOfRange(); // 0x9179cbfa
    error RedeemingInProgress(); // 0x24f44227
    error RevenueFeeRateTooHigh(); // 0x0674143f
    error UnSupportedOperation(); // 0xe9ec8129
    error UnsupportedToken(); // 0x6a172882
    error WithdrawZero(); // 0x7ea773a9
    error DepositHalted(); // 0x3ddeeb34

    // for 1inch swap
    error OneInchInvalidReceiver(); // 0xd540519e
    error OneInchInvalidToken(); // 0x8e7ad912
    error OneInchInvalidInputAmount(); // 0x672b500f
    error OneInchInvalidFunctionSignature(); // 0x247f51aa
    error OneInchUnexpectedSpentAmount(); // 0x295ada05
    error OneInchUnexpectedReturnAmount(); // 0x05e64ca8
    error OneInchNotSupported(); // 0x04b2de78
}
"
    },
    "src/main/common/Constants.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;

abstract contract Constants {
    address public constant USCC = 0x14d60E7FDC0D71d8611742720E4C50E7a974020c; // decimals: 6
    address public constant USDT = 0xdAC17F958D2ee523a2206206994597C13D831ec7; // decimals: 6
    address public constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48; // decimals: 6
    address public constant USDS = 0xdC035D45d973E3EC169d2276DDab16f1e407384F; // decimals: 18
    address public constant DAI = 0x6B175474E89094C44Da98b954EedeAC495271d0F; // decimales: 18
}
"
    },
    "dependencies/@openzeppelin-contracts-5.0.2/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.0.2/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "dependencies/@openzeppelin-contracts-5.0.2/token/ERC20/extensions/IERC20Permit.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Ever

Tags:
ERC20, Multisig, Swap, Upgradeable, Multi-Signature, Factory|addr:0x12f1011145f6e7a43511cf2d9ed99b779cfe07f9|verified:true|block:23553949|tx:0x95088e8666ba107730c990dabcf4d7e64d5b6103d3b7615afad576d40124fad4|first_check:1760268048

Submitted on: 2025-10-12 13:20:51

Comments

Log in to comment.

No comments yet.