Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/AnchorageTokenUSDtb.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;
import {ReentrancyGuardUpgradeable} from
"@openzeppelin/contracts-upgradeable-v4/security/ReentrancyGuardUpgradeable.sol";
import {ERC20PermitUpgradeable} from
"@openzeppelin/contracts-upgradeable-v4/token/ERC20/extensions/ERC20PermitUpgradeable.sol";
import {ERC20BurnableUpgradeable} from
"@openzeppelin/contracts-upgradeable-v4/token/ERC20/extensions/ERC20BurnableUpgradeable.sol";
import {ERC20PausableUpgradeable} from
"@openzeppelin/contracts-upgradeable-v4/token/ERC20/extensions/ERC20PausableUpgradeable.sol";
import {ERC20Upgradeable} from "@openzeppelin/contracts-upgradeable-v4/token/ERC20/ERC20Upgradeable.sol";
import {SingleAdminAccessControlUpgradeable} from "./SingleAdminAccessControlUpgradeable.sol";
/**
* @dev STORAGE Mirrors USDtb's legacy storage.
* DO NOT reorder/remove. Only append after this block.
*/
abstract contract USDtbStorage {
// solhint-disable private-vars-leading-underscore
/**
* @dev DEPRECATED: Legacy minter contract role, no longer used.
*/
bytes32 public constant __DEPRECATED_MINTER_CONTRACT = keccak256("MINTER_CONTRACT");
/**
* @dev DEPRECATED: Legacy blacklist manager role, no longer used.
*/
bytes32 public constant __DEPRECATED_BLACKLIST_MANAGER_ROLE = keccak256("BLACKLIST_MANAGER_ROLE");
/**
* @dev DEPRECATED: Legacy whitelist manager role, no longer used.
*/
bytes32 public constant __DEPRECATED_WHITELIST_MANAGER_ROLE = keccak256("WHITELIST_MANAGER_ROLE");
/**
* @dev Role assigned to blocked accounts that are restricted from transferring tokens
*/
bytes32 public constant BLACKLISTED_ROLE = keccak256("BLACKLISTED_ROLE");
/**
* @dev DEPRECATED: Legacy whitelisted role, no longer used.
*/
bytes32 public constant __DEPRECATED_WHITELISTED_ROLE = keccak256("WHITELISTED_ROLE");
/**
* @notice Thrown when a caller lacks permission for a restricted operation
*/
error OperationNotAllowed();
/**
* @notice DEPRECATED: This enum is no longer used.
* @dev Legacy transfer state control.
*/
enum TransferState {
FULLY_DISABLED,
WHITELIST_ENABLED,
FULLY_ENABLED
}
/**
* @notice DEPRECATED: Transfer state, occupies original slot.
*/
TransferState internal _transferState;
}
/**
* @title AnchorageTokenUSDtb
* @dev TransparentProxy-upgradeable ERC20 token for regulated stablecoin issuance.
* Implements access control, minting/burning, pausing, account blocking, and permit support.
* @custom:security-contact security@anchorage.com
*/
contract AnchorageTokenUSDtb is
ERC20BurnableUpgradeable,
ERC20PermitUpgradeable,
ReentrancyGuardUpgradeable,
SingleAdminAccessControlUpgradeable,
USDtbStorage,
ERC20PausableUpgradeable
{
/**
* @dev Custom error thrown when attempting to interact with a blocked account
*/
error AccountBlocked();
/**
* @dev Error thrown when a deprecated function is called.
* @notice This error indicates an attempt to use functionality that has been removed.
*/
error Deprecated();
/**
* @dev Error thrown when a zero address is provided where a valid address is required
*/
error ZeroAddress();
/**
* @dev Role identifier for accounts that can mint and burn tokens
*/
bytes32 public constant MINTER_BURNER_ROLE = keccak256("MINTER_BURNER_ROLE");
/**
* @dev Role identifier for accounts that can block and unblock other accounts
*/
bytes32 public constant BLOCKLISTER_ROLE = keccak256("BLOCKLISTER_ROLE");
/**
* @dev Role identifier for accounts that can pause and unpause the contract
*/
bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE");
/**
* @dev Emitted when accounts are blocked
*/
event AccountsBlocked(address[] accounts);
/**
* @dev Emitted when accounts are unblocked
*/
event AccountsUnblocked(address[] accounts);
/**
* @dev Constructor that disables initializers to prevent implementation contract initialization
* @custom:oz-upgrades-unsafe-allow constructor
*/
constructor() {
_disableInitializers();
}
/**
* @dev Initializes the contract with name, symbol, and admin address
* @param name The name of the token
* @param symbol The symbol of the token
* @param admin The address that will receive the admin role and all other roles
* @notice This function can only be called once during proxy deployment
*/
function initialize(string memory name, string memory symbol, address admin) public initializer {
__ERC20_init(name, symbol);
__ERC20Permit_init(name);
_grantRole(DEFAULT_ADMIN_ROLE, admin);
}
/**
* @dev Initializes V2 of the contract with role assignments
* @param admin The address that will receive the admin role (replaces current admin)
* @param minterBurner The address that will receive the minter/burner role
* @param blocklister The address that will receive the blocklister role
* @param pauser The address that will receive the pauser role
* @notice This function can only be called once during upgrade to V2
* @notice The admin role will be transferred from the current admin to the new admin
*/
function initializeV2(address admin, address minterBurner, address blocklister, address pauser)
public
reinitializer(2)
{
if (admin == address(0)) revert ZeroAddress();
if (minterBurner == address(0)) revert ZeroAddress();
if (blocklister == address(0)) revert ZeroAddress();
if (pauser == address(0)) revert ZeroAddress();
_grantRole(DEFAULT_ADMIN_ROLE, admin);
_grantRole(MINTER_BURNER_ROLE, minterBurner);
_grantRole(BLOCKLISTER_ROLE, blocklister);
_grantRole(PAUSER_ROLE, pauser);
}
/**
* @dev Mints new tokens to the specified address
* @param to The address that will receive the minted tokens
* @param amount The amount of tokens to mint
* @notice Only accounts with MINTER_BURNER_ROLE can call this function
* @notice Cannot mint to blocked accounts
* @notice Cannot mint when contract is paused
*/
function mint(address to, uint256 amount) public onlyRole(MINTER_BURNER_ROLE) whenNotPaused {
_mint(to, amount);
}
/**
* @dev Burns tokens from the specified address
* @param from The address whose tokens will be burned
* @param amount The amount of tokens to burn
* @notice Only accounts with MINTER_BURNER_ROLE can call this function
* @notice Can burn from blocked accounts
* @notice Cannot burn when contract is paused
*/
function burn(address from, uint256 amount) public onlyRole(MINTER_BURNER_ROLE) whenNotPaused {
_burn(from, amount);
}
/**
* @dev Blocks multiple accounts from transferring or receiving tokens
* @param accounts Array of addresses to block
* @notice Only accounts with BLOCKLISTER_ROLE can call this function
*/
function blockAccounts(address[] calldata accounts) public onlyRole(BLOCKLISTER_ROLE) {
uint256 length = accounts.length;
for (uint256 i; i < length;) {
_grantRole(BLACKLISTED_ROLE, accounts[i]);
unchecked {
++i;
}
}
emit AccountsBlocked(accounts);
}
/**
* @dev Unblocks multiple accounts, allowing them to transfer and receive tokens
* @param accounts Array of addresses to unblock
* @notice Only accounts with BLOCKLISTER_ROLE can call this function
*/
function unblockAccounts(address[] calldata accounts) public onlyRole(BLOCKLISTER_ROLE) {
uint256 length = accounts.length;
for (uint256 i; i < length;) {
_revokeRole(BLACKLISTED_ROLE, accounts[i]);
unchecked {
++i;
}
}
emit AccountsUnblocked(accounts);
}
/**
* @dev Pauses all token transfers, minting, and burning
* @notice Only accounts with PAUSER_ROLE can call this function
*/
function pause() public onlyRole(PAUSER_ROLE) {
_pause();
}
/**
* @dev Unpauses all token transfers, minting, and burning
* @notice Only accounts with PAUSER_ROLE can call this function
*/
function unpause() public onlyRole(PAUSER_ROLE) {
_unpause();
}
/**
* @dev Checks if an account is blocked
* @param account The address to check
* @return bool True if the account is blocked, false otherwise
*/
function isBlocked(address account) public view returns (bool) {
return hasRole(BLACKLISTED_ROLE, account);
}
function renounceRole(bytes32 role, address account) public override {
if (role == BLACKLISTED_ROLE) revert OperationNotAllowed();
super.renounceRole(role, account);
}
/**
* @dev Internal function that handles token transfers before the transfer
* @param from The address sending the tokens
* @param to The address receiving the tokens
* @param value The amount of tokens to transfer
* @notice Reverts if either the sender or receiver is blocked (except for burning)
* @notice Prevents minting to blocked addresses
*/
function _beforeTokenTransfer(address from, address to, uint256 value)
internal
override(ERC20Upgradeable, ERC20PausableUpgradeable)
{
// Allow burning (to == address(0)) but prevent minting (from == address(0)) to blocked addresses
// Block regular transfers involving blocked accounts
if (to != address(0) && (isBlocked(from) || isBlocked(to))) revert AccountBlocked();
super._beforeTokenTransfer(from, to, value);
}
/**
* @dev Deprecated burn function that reverts when called
* @notice This function exists only to explicitly mark the legacy burn interface as deprecated
* @custom:deprecated This function is deprecated and will always revert
*/
function burn(uint256) public pure override(ERC20BurnableUpgradeable) {
revert Deprecated();
}
/**
* @dev Deprecated burnFrom function that reverts when called
* @notice This function exists only to explicitly mark the legacy burnFrom interface as deprecated
* @custom:deprecated This function is deprecated and will always revert
*/
function burnFrom(address, uint256) public pure override(ERC20BurnableUpgradeable) {
revert Deprecated();
}
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4/contracts/security/ReentrancyGuardUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4/contracts/token/ERC20/extensions/ERC20PermitUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.0;
import "./IERC20PermitUpgradeable.sol";
import "../ERC20Upgradeable.sol";
import "../../../utils/cryptography/ECDSAUpgradeable.sol";
import "../../../utils/cryptography/EIP712Upgradeable.sol";
import "../../../utils/CountersUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* _Available since v3.4._
*
* @custom:storage-size 51
*/
abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20PermitUpgradeable, EIP712Upgradeable {
using CountersUpgradeable for CountersUpgradeable.Counter;
mapping(address => CountersUpgradeable.Counter) private _nonces;
// solhint-disable-next-line var-name-mixedcase
bytes32 private constant _PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
* However, to ensure consistency with the upgradeable transpiler, we will continue
* to reserve a slot.
* @custom:oz-renamed-from _PERMIT_TYPEHASH
*/
// solhint-disable-next-line var-name-mixedcase
bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC20 token name.
*/
function __ERC20Permit_init(string memory name) internal onlyInitializing {
__EIP712_init_unchained(name, "1");
}
function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {}
/**
* @inheritdoc IERC20PermitUpgradeable
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSAUpgradeable.recover(hash, v, r, s);
require(signer == owner, "ERC20Permit: invalid signature");
_approve(owner, spender, value);
}
/**
* @inheritdoc IERC20PermitUpgradeable
*/
function nonces(address owner) public view virtual override returns (uint256) {
return _nonces[owner].current();
}
/**
* @inheritdoc IERC20PermitUpgradeable
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return _domainSeparatorV4();
}
/**
* @dev "Consume a nonce": return the current value and increment.
*
* _Available since v4.1._
*/
function _useNonce(address owner) internal virtual returns (uint256 current) {
CountersUpgradeable.Counter storage nonce = _nonces[owner];
current = nonce.current();
nonce.increment();
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4/contracts/token/ERC20/extensions/ERC20BurnableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol)
pragma solidity ^0.8.0;
import "../ERC20Upgradeable.sol";
import "../../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20BurnableUpgradeable is Initializable, ContextUpgradeable, ERC20Upgradeable {
function __ERC20Burnable_init() internal onlyInitializing {
}
function __ERC20Burnable_init_unchained() internal onlyInitializing {
}
/**
* @dev Destroys `amount` tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 amount) public virtual {
_burn(_msgSender(), amount);
}
/**
* @dev Destroys `amount` tokens from `account`, deducting from the caller's
* allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `amount`.
*/
function burnFrom(address account, uint256 amount) public virtual {
_spendAllowance(account, _msgSender(), amount);
_burn(account, amount);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4/contracts/token/ERC20/extensions/ERC20PausableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Pausable.sol)
pragma solidity ^0.8.0;
import "../ERC20Upgradeable.sol";
import "../../../security/PausableUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev ERC20 token with pausable token transfers, minting and burning.
*
* Useful for scenarios such as preventing trades until the end of an evaluation
* period, or having an emergency switch for freezing all token transfers in the
* event of a large bug.
*
* IMPORTANT: This contract does not include public pause and unpause functions. In
* addition to inheriting this contract, you must define both functions, invoking the
* {Pausable-_pause} and {Pausable-_unpause} internal functions, with appropriate
* access control, e.g. using {AccessControl} or {Ownable}. Not doing so will
* make the contract unpausable.
*/
abstract contract ERC20PausableUpgradeable is Initializable, ERC20Upgradeable, PausableUpgradeable {
function __ERC20Pausable_init() internal onlyInitializing {
__Pausable_init_unchained();
}
function __ERC20Pausable_init_unchained() internal onlyInitializing {
}
/**
* @dev See {ERC20-_beforeTokenTransfer}.
*
* Requirements:
*
* - the contract must not be paused.
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
super._beforeTokenTransfer(from, to, amount);
require(!paused(), "ERC20Pausable: token transfer while paused");
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4/contracts/token/ERC20/ERC20Upgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20Upgradeable.sol";
import "./extensions/IERC20MetadataUpgradeable.sol";
import "../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
__ERC20_init_unchained(name_, symbol_);
}
function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[45] private __gap;
}
"
},
"src/SingleAdminAccessControlUpgradeable.sol": {
"content": "// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.30;
import "@openzeppelin/contracts-upgradeable-v4/access/AccessControlUpgradeable.sol";
import "@openzeppelin/contracts-v4/interfaces/IERC5313.sol";
interface ISingleAdminAccessControl {
error InvalidAdminChange();
error NotPendingAdmin();
event AdminTransferred(address indexed oldAdmin, address indexed newAdmin);
event AdminTransferRequested(address indexed oldAdmin, address indexed newAdmin);
}
/**
* @title SingleAdminAccessControlUpgradeable
* @notice SingleAdminAccessControlUpgradeable is a contract that provides a single admin role
* @notice This contract is a simplified alternative to OpenZeppelin's AccessControlDefaultAdminRules
*/
abstract contract SingleAdminAccessControlUpgradeable is
IERC5313,
ISingleAdminAccessControl,
AccessControlUpgradeable
{
address private _currentDefaultAdmin;
address private _pendingDefaultAdmin;
modifier notAdmin(bytes32 role) {
if (role == DEFAULT_ADMIN_ROLE) revert InvalidAdminChange();
_;
}
/// @notice Transfer the admin role to a new address
/// @notice This can ONLY be executed by the current admin
/// @param newAdmin address
function transferAdmin(address newAdmin) external onlyRole(DEFAULT_ADMIN_ROLE) {
if (newAdmin == msg.sender) revert InvalidAdminChange();
_pendingDefaultAdmin = newAdmin;
emit AdminTransferRequested(_currentDefaultAdmin, newAdmin);
}
function acceptAdmin() external {
if (msg.sender != _pendingDefaultAdmin) revert NotPendingAdmin();
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
}
/// @notice grant a role
/// @notice can only be executed by the current single admin
/// @notice admin role cannot be granted externally
/// @param role bytes32
/// @param account address
function grantRole(bytes32 role, address account) public override onlyRole(DEFAULT_ADMIN_ROLE) notAdmin(role) {
_grantRole(role, account);
}
/// @notice revoke a role
/// @notice can only be executed by the current admin
/// @notice admin role cannot be revoked
/// @param role bytes32
/// @param account address
function revokeRole(bytes32 role, address account) public override onlyRole(DEFAULT_ADMIN_ROLE) notAdmin(role) {
_revokeRole(role, account);
}
/// @notice renounce the role of msg.sender
/// @notice admin role cannot be renounced
/// @param role bytes32
/// @param account address
function renounceRole(bytes32 role, address account) public virtual override notAdmin(role) {
super.renounceRole(role, account);
}
/**
* @dev See {IERC5313-owner}.
*/
function owner() public view virtual returns (address) {
return _currentDefaultAdmin;
}
/**
* @notice no way to change admin without removing old admin first
*/
function _grantRole(bytes32 role, address account) internal override {
if (role == DEFAULT_ADMIN_ROLE) {
emit AdminTransferred(_currentDefaultAdmin, account);
_revokeRole(DEFAULT_ADMIN_ROLE, _currentDefaultAdmin);
_currentDefaultAdmin = account;
delete _pendingDefaultAdmin;
}
super._grantRole(role, account);
}
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4/contracts/proxy/utils/Initializable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4/contracts/token/ERC20/extensions/IERC20PermitUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20PermitUpgradeable {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4/contracts/utils/cryptography/ECDSAUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../StringsUpgradeable.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSAUpgradeable {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\
32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\
", StringsUpgradeable.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4/contracts/utils/cryptography/EIP712Upgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.8;
import "./ECDSAUpgradeable.sol";
import "../../interfaces/IERC5267Upgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* _Available since v3.4._
*
* @custom:storage-size 52
*/
abstract contract EIP712Upgradeable is Initializable, IERC5267Upgradeable {
bytes32 private constant _TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
/// @custom:oz-renamed-from _HASHED_NAME
bytes32 private _hashedName;
/// @custom:oz-renamed-from _HASHED_VERSION
bytes32 private _hashedVersion;
string private _name;
string private _version;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
__EIP712_init_unchained(name, version);
}
function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
_name = name;
_version = version;
// Reset prior values in storage if upgrading
_hashedName = 0;
_hashedVersion = 0;
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
return _buildDomainSeparator();
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain
Submitted on: 2025-10-12 14:14:55
Comments
Log in to comment.
No comments yet.