TermMaxRouterV2

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "contracts/v2/router/TermMaxRouterV2.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.27;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC721Receiver} from "@openzeppelin/contracts/interfaces/IERC721Receiver.sol";
import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol";
import {
    Ownable2StepUpgradeable,
    OwnableUpgradeable
} from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {ITermMaxMarket} from "../../v1/ITermMaxMarket.sol";
import {ITermMaxMarketV2} from "../ITermMaxMarketV2.sol";
import {SwapUnit} from "../../v1/router/ISwapAdapter.sol";
import {RouterErrors} from "../../v1/errors/RouterErrors.sol";
import {RouterEvents} from "../../v1/events/RouterEvents.sol";
import {TransferUtilsV2} from "../lib/TransferUtilsV2.sol";
import {IFlashLoanReceiver} from "../../v1/IFlashLoanReceiver.sol";
import {IFlashRepayer} from "../../v1/tokens/IFlashRepayer.sol";
import {ITermMaxRouterV2, SwapPath, FlashLoanType, FlashRepayOptions} from "./ITermMaxRouterV2.sol";
import {IGearingToken} from "../../v1/tokens/IGearingToken.sol";
import {IGearingTokenV2} from "../tokens/IGearingTokenV2.sol";
import {Constants} from "../../v1/lib/Constants.sol";
import {IERC20SwapAdapter} from "./IERC20SwapAdapter.sol";
import {IAaveV3Pool} from "../extensions/aave/IAaveV3Pool.sol";
import {ICreditDelegationToken} from "../extensions/aave/ICreditDelegationToken.sol";
import {IMorpho, Id, MarketParams, Authorization, Signature} from "../extensions/morpho/IMorpho.sol";
import {RouterErrorsV2} from "../errors/RouterErrorsV2.sol";
import {RouterEventsV2} from "../events/RouterEventsV2.sol";
import {ArrayUtilsV2} from "../lib/ArrayUtilsV2.sol";
import {IWhitelistManager} from "../access/IWhitelistManager.sol";
import {VersionV2} from "../VersionV2.sol";

/**
 * @title TermMax Router V2
 * @author Term Structure Labs
 */
contract TermMaxRouterV2 is
    UUPSUpgradeable,
    Ownable2StepUpgradeable,
    PausableUpgradeable,
    IFlashLoanReceiver,
    IFlashRepayer,
    IERC721Receiver,
    ITermMaxRouterV2,
    RouterErrors,
    RouterEvents,
    VersionV2,
    ReentrancyGuardUpgradeable
{
    using SafeCast for *;
    using TransferUtilsV2 for IERC20;
    using Math for *;
    using ArrayUtilsV2 for *;

    /// @notice whitelist mapping of adapter
    mapping(address => bool) public adapterWhitelist;
    IWhitelistManager internal whitelistManager;

    uint256 private constant T_ROLLOVER_GT_RESERVE_STORE = 0;
    uint256 private constant T_CALLBACK_ADDRESS_STORE = 1;
    uint256 private constant T_CALLER = 2;

    modifier onlyCallbackAddress() {
        address callbackAddress;
        assembly {
            callbackAddress := tload(T_CALLBACK_ADDRESS_STORE)
            // clear callback address after use
            tstore(T_CALLBACK_ADDRESS_STORE, 0)
        }
        if (_msgSender() != callbackAddress) {
            revert RouterErrorsV2.CallbackAddressNotMatch();
        }
        _;
    }

    modifier checkSwapPaths(SwapPath[] memory paths) {
        if (paths.length == 0 || paths[0].units.length == 0) revert RouterErrorsV2.SwapPathsIsEmpty();
        _;
    }

    function _authorizeUpgrade(address newImplementation) internal virtual override onlyOwner {}

    function initialize(address admin, address whitelistManager_) external initializer {
        __ReentrancyGuard_init_unchained();
        __UUPSUpgradeable_init_unchained();
        __Pausable_init_unchained();
        __Ownable_init_unchained(admin);
        _setWhitelistManager(whitelistManager_);
    }

    function initializeV2(address whitelistManager_) external reinitializer(2) {
        __ReentrancyGuard_init_unchained();
        _setWhitelistManager(whitelistManager_);
    }

    function setWhitelistManager(address whitelistManager_) external onlyOwner {
        _setWhitelistManager(whitelistManager_);
    }

    function _setWhitelistManager(address whitelistManager_) internal {
        whitelistManager = IWhitelistManager(whitelistManager_);
        emit RouterEventsV2.WhitelistManagerUpdated(whitelistManager_);
    }

    /**
     * @inheritdoc ITermMaxRouterV2
     */
    function swapTokens(SwapPath[] memory paths)
        external
        nonReentrant
        whenNotPaused
        checkSwapPaths(paths)
        returns (uint256[] memory)
    {
        return _executeSwapPaths(paths);
    }

    function _executeSwapPaths(SwapPath[] memory paths) internal returns (uint256[] memory netTokenOuts) {
        netTokenOuts = new uint256[](paths.length);
        for (uint256 i = 0; i < paths.length; ++i) {
            SwapPath memory path = paths[i];
            if (path.useBalanceOnchain) {
                uint256 balanceOnChain = IERC20(path.units[0].tokenIn).balanceOf(address(this));
                netTokenOuts[i] = _executeSwapUnits(path.recipient, balanceOnChain, path.units);
            } else {
                IERC20(path.units[0].tokenIn).safeTransferFrom(_msgSender(), address(this), path.inputAmount);
                netTokenOuts[i] = _executeSwapUnits(path.recipient, path.inputAmount, path.units);
            }
        }
        return netTokenOuts;
    }

    function _executeSwapUnits(address recipient, uint256 inputAmt, SwapUnit[] memory units)
        internal
        returns (uint256 outputAmt)
    {
        if (units.length == 0) {
            revert SwapUnitsIsEmpty();
        }
        for (uint256 i = 0; i < units.length; ++i) {
            if (units[i].tokenIn == units[i].tokenOut) {
                continue;
            }
            if (units[i].adapter == address(0)) {
                // transfer token directly if no adapter is specified
                IERC20(units[i].tokenIn).safeTransfer(recipient, inputAmt);
                continue;
            }
            _checkAdapterWhitelist(units[i].adapter);
            bytes memory dataToSwap = i == units.length - 1
                ? abi.encodeCall(
                    IERC20SwapAdapter.swap, (recipient, units[i].tokenIn, units[i].tokenOut, inputAmt, units[i].swapData)
                )
                : abi.encodeCall(
                    IERC20SwapAdapter.swap,
                    (address(this), units[i].tokenIn, units[i].tokenOut, inputAmt, units[i].swapData)
                );
            (bool success, bytes memory returnData) = units[i].adapter.delegatecall(dataToSwap);
            if (!success) {
                revert SwapFailed(units[i].adapter, returnData);
            }
            inputAmt = abi.decode(returnData, (uint256));
        }
        outputAmt = inputAmt;
    }

    /**
     * @inheritdoc ITermMaxRouterV2
     */
    function leverage(
        address recipient,
        ITermMaxMarket market,
        uint128 maxLtv,
        bool isV1,
        SwapPath[] memory inputPaths,
        SwapPath memory swapXtPath,
        SwapPath memory swapCollateralPath
    ) external nonReentrant whenNotPaused returns (uint256 gtId, uint256 netXtOut) {
        assembly {
            tstore(T_CALLBACK_ADDRESS_STORE, market) // set callback address
        }
        (, IERC20 xt, IGearingToken gt,, IERC20 debtToken) = market.tokens();
        // transfer input tokens(may swap any token to debt token)
        _executeSwapPaths(inputPaths);
        uint256 totalDebtToken = debtToken.balanceOf(address(this));
        // swap debt token to xt token if needed
        if (swapXtPath.units.length != 0) {
            netXtOut = _executeSwapUnits(address(this), swapXtPath.inputAmount, swapXtPath.units);
        }
        uint256 totalXt = xt.balanceOf(address(this));
        bytes memory callbackData = abi.encode(address(gt), swapCollateralPath.units);
        if (isV1) {
            xt.safeIncreaseAllowance(address(market), totalXt);
            gtId = market.leverageByXt(recipient, totalXt.toUint128(), callbackData);
        } else {
            gtId = ITermMaxMarketV2(address(market)).leverageByXt(
                address(this), recipient, totalXt.toUint128(), callbackData
            );
        }

        (,, bytes memory collateralData) = gt.loanInfo(gtId);
        (, uint128 ltv,) = gt.getLiquidationInfo(gtId);
        if (ltv > maxLtv) {
            revert LtvBiggerThanExpected(maxLtv, ltv);
        }
        emit IssueGt(
            market,
            gtId,
            _msgSender(),
            recipient,
            (totalDebtToken).toUint128(),
            netXtOut.toUint128(),
            ltv,
            collateralData
        );
    }

    function borrowTokenFromCollateral(
        address recipient,
        ITermMaxMarket market,
        uint256 collInAmt,
        uint128 maxDebtAmt,
        SwapPath memory swapFtPath
    ) external nonReentrant whenNotPaused returns (uint256) {
        (IERC20 ft,, IGearingToken gt, address collateralAddr,) = market.tokens();
        IERC20(collateralAddr).safeTransferFrom(_msgSender(), address(this), collInAmt);
        IERC20(collateralAddr).safeIncreaseAllowance(address(gt), collInAmt);

        (uint256 gtId, uint128 ftOutAmt) = market.issueFt(address(this), maxDebtAmt, abi.encode(collInAmt));
        gt.safeTransferFrom(address(this), recipient, gtId);
        uint256 netTokenIn = _executeSwapUnits(swapFtPath.recipient, ftOutAmt, swapFtPath.units);
        uint256 repayAmt = ftOutAmt - netTokenIn;
        if (repayAmt > 0) {
            ft.safeIncreaseAllowance(address(gt), repayAmt);
            // repay in ft, bool false means not using debt token
            gt.repay(gtId, repayAmt.toUint128(), false);
        }
        emit Borrow(market, gtId, _msgSender(), recipient, collInAmt, ftOutAmt, netTokenIn.toUint128());
        return gtId;
    }

    function borrowTokenFromCollateralAndXt(
        address recipient,
        ITermMaxMarket market,
        uint256 collInAmt,
        uint256 borrowAmt,
        bool isV1
    ) external nonReentrant whenNotPaused returns (uint256) {
        (IERC20 ft, IERC20 xt, IGearingToken gt, address collateralAddr,) = market.tokens();

        IERC20(collateralAddr).safeTransferFrom(_msgSender(), address(this), collInAmt);
        IERC20(collateralAddr).safeIncreaseAllowance(address(gt), collInAmt);

        uint256 mintGtFeeRatio = market.mintGtFeeRatio();
        uint128 debtAmt = ((borrowAmt * Constants.DECIMAL_BASE) / (Constants.DECIMAL_BASE - mintGtFeeRatio)).toUint128();

        (uint256 gtId, uint128 ftOutAmt) = market.issueFt(address(this), debtAmt, abi.encode(collInAmt));
        gt.safeTransferFrom(address(this), recipient, gtId);
        borrowAmt = borrowAmt.min(ftOutAmt);
        xt.safeTransferFrom(_msgSender(), address(this), borrowAmt);
        if (isV1) {
            xt.safeIncreaseAllowance(address(market), borrowAmt);
            ft.safeIncreaseAllowance(address(market), borrowAmt);
        }

        market.burn(recipient, borrowAmt);

        emit Borrow(market, gtId, _msgSender(), recipient, collInAmt, debtAmt, borrowAmt.toUint128());
        return gtId;
    }

    function flashRepayFromColl(
        address recipient,
        ITermMaxMarket market,
        uint256 gtId,
        bool byDebtToken,
        uint256 expectedOutput,
        bytes memory callbackData
    ) external nonReentrant whenNotPaused returns (uint256 netTokenOut) {
        (,, IGearingToken gtToken,, IERC20 debtToken) = market.tokens();
        assembly {
            // set callback address
            tstore(T_CALLBACK_ADDRESS_STORE, gtToken)
        }
        gtToken.safeTransferFrom(_msgSender(), address(this), gtId, "");
        gtToken.flashRepay(gtId, byDebtToken, callbackData);
        netTokenOut = debtToken.balanceOf(address(this));
        if (netTokenOut < expectedOutput) {
            revert InsufficientTokenOut(address(debtToken), expectedOutput, netTokenOut);
        }
        debtToken.safeTransfer(recipient, netTokenOut);
        emit RouterEventsV2.FlashRepay(address(gtToken), gtId, netTokenOut);
    }

    function rolloverGt(
        IGearingToken gtToken,
        uint256 gtId,
        IERC20 additionalAsset,
        uint256 additionalAmt,
        bytes memory rolloverData
    ) external nonReentrant whenNotPaused returns (uint256 newGtId) {
        return _rolloverGt(gtToken, gtId, additionalAsset, additionalAmt, rolloverData);
    }

    function _rolloverGt(
        IGearingToken gtToken,
        uint256 gtId,
        IERC20 additionalAsset,
        uint256 additionalAmt,
        bytes memory rolloverData
    ) internal returns (uint256 newGtId) {
        address firstCaller = _msgSender();
        assembly {
            // set callback address
            tstore(T_CALLBACK_ADDRESS_STORE, gtToken)
            // clear ts stograge
            tstore(T_ROLLOVER_GT_RESERVE_STORE, 0)
            // set caller address
            tstore(T_CALLER, firstCaller)
        }
        // additional debt/new collateral token to reduce the ltv
        if (additionalAmt != 0) {
            additionalAsset.safeTransferFrom(firstCaller, address(this), additionalAmt);
        }
        gtToken.safeTransferFrom(firstCaller, address(this), gtId, "");
        gtToken.flashRepay(gtId, true, rolloverData);
        assembly {
            newGtId := tload(T_ROLLOVER_GT_RESERVE_STORE)
        }
        emit RouterEventsV2.RolloverGt(address(gtToken), gtId, newGtId, address(additionalAsset), additionalAmt);
    }

    /**
     * @inheritdoc ITermMaxRouterV2
     */
    function swapAndRepay(IGearingToken gt, uint256 gtId, uint128 repayAmt, bool byDebtToken, SwapPath[] memory paths)
        external
        override
        nonReentrant
        whenNotPaused
        checkSwapPaths(paths)
        returns (uint256[] memory netOutOrIns)
    {
        netOutOrIns = _executeSwapPaths(paths);
        IERC20 repayToken = IERC20(paths[0].units[paths[0].units.length - 1].tokenOut);
        repayToken.safeIncreaseAllowance(address(gt), repayAmt);
        gt.repay(gtId, repayAmt, byDebtToken);
        uint256 remainingRepayToken = repayToken.balanceOf(address(this));
        if (remainingRepayToken != 0) {
            repayToken.safeTransfer(_msgSender(), remainingRepayToken);
        }
        emit RouterEventsV2.SwapAndRepay(address(gt), gtId, repayAmt, remainingRepayToken);
    }

    /// @dev Market flash leverage flashloan callback
    function executeOperation(address, IERC20, uint256, bytes memory data)
        external
        override
        onlyCallbackAddress
        returns (bytes memory collateralData)
    {
        (address gt, SwapUnit[] memory units) = abi.decode(data, (address, SwapUnit[]));
        uint256 totalAmount = IERC20(units[0].tokenIn).balanceOf(address(this));
        uint256 collateralBalance = _executeSwapUnits(address(this), totalAmount, units);
        SwapUnit memory lastUnit = units[units.length - 1];
        _checkAdapterWhitelist(lastUnit.adapter);
        IERC20 collateral = IERC20(lastUnit.tokenOut);
        collateralBalance = collateral.balanceOf(address(this));
        collateral.safeIncreaseAllowance(gt, collateralBalance);
        collateralData = abi.encode(collateralBalance);
    }

    /// @dev Gt flash repay flashloan callback
    function executeOperation(
        IERC20 repayToken,
        uint128 repayAmt,
        address,
        bytes memory removedCollateralData,
        bytes memory callbackData
    ) external override onlyCallbackAddress {
        (FlashRepayOptions option, bytes memory data) = abi.decode(callbackData, (FlashRepayOptions, bytes));
        if (option == FlashRepayOptions.REPAY) {
            _flashRepay(data);
        } else if (option == FlashRepayOptions.ROLLOVER) {
            _rollover(repayToken, repayAmt, removedCollateralData, data);
        } else {
            address firstCaller;
            assembly {
                firstCaller := tload(T_CALLER)
                //clear caller address after use
                tstore(T_CALLER, 0)
            }
            if (option == FlashRepayOptions.ROLLOVER_AAVE) {
                _rolloverToAave(firstCaller, repayToken, repayAmt, removedCollateralData, data);
            } else if (option == FlashRepayOptions.ROLLOVER_MORPHO) {
                _rolloverToMorpho(firstCaller, repayToken, repayAmt, removedCollateralData, data);
            }
        }
        repayToken.safeIncreaseAllowance(_msgSender(), repayAmt);
    }

    function _flashRepay(bytes memory callbackData) internal {
        // By debt token: collateral-> debt token
        // By ft token: collateral-> debt token -> exact ft token
        SwapPath memory repayTokenPath = abi.decode(callbackData, (SwapPath));
        _executeSwapUnits(address(this), repayTokenPath.inputAmount, repayTokenPath.units);
    }

    function _rollover(IERC20, uint256, bytes memory, bytes memory callbackData) internal {
        (
            address recipient,
            ITermMaxMarket market,
            uint128 maxLtv,
            SwapPath memory collateralPath,
            SwapPath memory debtTokenPath
        ) = abi.decode(callbackData, (address, ITermMaxMarket, uint128, SwapPath, SwapPath));

        // Do swap to get the new collateral,(the inpput amount may contains additional old collateral)
        if (collateralPath.units.length != 0) {
            _executeSwapUnits(address(this), collateralPath.inputAmount, collateralPath.units);
        }

        (IERC20 ft,, IGearingToken gt, address collateral,) = market.tokens();
        // Get balances, may contain additional new collateral
        uint256 newCollateralAmt = IERC20(collateral).balanceOf(address(this));
        uint256 gtId;
        // issue new gt to get new ft token
        {
            // issue new gt
            uint256 mintGtFeeRatio = market.mintGtFeeRatio();
            uint128 newDebtAmt = (
                (debtTokenPath.inputAmount * Constants.DECIMAL_BASE) / (Constants.DECIMAL_BASE - mintGtFeeRatio)
            ).toUint128();
            IERC20(collateral).safeIncreaseAllowance(address(gt), newCollateralAmt);
            (gtId,) = market.issueFt(address(this), newDebtAmt, abi.encode(newCollateralAmt));
            // transfer new gt to recipient
            gt.safeTransferFrom(address(this), recipient, gtId);
        }
        // Swap ft to debt token to repay(swap amount + additional debt token amount should equal repay amt)
        {
            uint256 netFtCost = _executeSwapUnits(address(this), debtTokenPath.inputAmount, debtTokenPath.units);
            // check remaining ft amount
            if (debtTokenPath.inputAmount > netFtCost) {
                uint256 repaidFtAmt = debtTokenPath.inputAmount - netFtCost;
                ft.safeIncreaseAllowance(address(gt), repaidFtAmt);
                // repay in ft, bool false means not using debt token
                gt.repay(gtId, repaidFtAmt.toUint128(), false);
            }
            (, uint128 ltv,) = gt.getLiquidationInfo(gtId);
            if (ltv > maxLtv) {
                revert LtvBiggerThanExpected(maxLtv, ltv);
            }
        }
        assembly {
            tstore(T_ROLLOVER_GT_RESERVE_STORE, gtId)
        }
    }

    function _rolloverToAave(
        address caller,
        IERC20 debtToken,
        uint256 repayAmt,
        bytes memory,
        bytes memory callbackData
    ) internal {
        (
            IERC20 collateral,
            IAaveV3Pool aave,
            uint256 interestRateMode,
            uint16 referralCode,
            ICreditDelegationToken.AaveDelegationParams memory delegationParams,
            SwapPath memory collateralPath
        ) = abi.decode(
            callbackData, (IERC20, IAaveV3Pool, uint256, uint16, ICreditDelegationToken.AaveDelegationParams, SwapPath)
        );
        if (delegationParams.delegator != address(0)) {
            // delegate with sig
            delegationParams.aaveDebtToken.delegationWithSig(
                delegationParams.delegator,
                delegationParams.delegatee,
                delegationParams.value,
                delegationParams.deadline,
                delegationParams.v,
                delegationParams.r,
                delegationParams.s
            );
        }
        repayAmt = repayAmt - debtToken.balanceOf(address(this));
        if (collateralPath.units.length > 0) {
            // do swap to get the new collateral
            uint256 newCollateralAmt =
                _executeSwapUnits(address(this), collateral.balanceOf(address(this)), collateralPath.units);
            IERC20 newCollateral = IERC20(collateralPath.units[collateralPath.units.length - 1].tokenOut);
            newCollateral.safeIncreaseAllowance(address(aave), newCollateralAmt);
            aave.supply(address(newCollateral), newCollateralAmt, caller, referralCode);
        } else {
            uint256 collateralAmt = collateral.balanceOf(address(this));
            collateral.safeIncreaseAllowance(address(aave), collateralAmt);
            aave.supply(address(collateral), collateralAmt, caller, referralCode);
        }
        aave.borrow(address(debtToken), repayAmt, interestRateMode, referralCode, caller);
    }

    function _rolloverToMorpho(
        address caller,
        IERC20 debtToken,
        uint256 repayAmt,
        bytes memory,
        bytes memory callbackData
    ) internal {
        (
            IERC20 collateral,
            IMorpho morpho,
            Id marketId,
            Authorization memory auth,
            Signature memory sig,
            SwapPath memory collateralPath
        ) = abi.decode(callbackData, (IERC20, IMorpho, Id, Authorization, Signature, SwapPath));
        MarketParams memory marketParams = morpho.idToMarketParams(marketId);
        if (auth.authorized != address(0)) {
            // auth with sig
            morpho.setAuthorizationWithSig(auth, sig);
        }
        repayAmt = repayAmt - debtToken.balanceOf(address(this));
        if (collateralPath.units.length > 0) {
            // do swap to get the new collateral
            uint256 newCollateralAmt =
                _executeSwapUnits(address(this), collateral.balanceOf(address(this)), collateralPath.units);
            IERC20 newCollateral = IERC20(collateralPath.units[collateralPath.units.length - 1].tokenOut);
            newCollateral.safeIncreaseAllowance(address(morpho), newCollateralAmt);
            morpho.supplyCollateral(marketParams, newCollateralAmt, caller, "");
        } else {
            uint256 collateralAmt = collateral.balanceOf(address(this));
            collateral.safeIncreaseAllowance(address(morpho), collateralAmt);
            morpho.supplyCollateral(marketParams, collateralAmt, caller, "");
        }
        /// @dev Borrow the repay amount from morpho, share amount is 0 and receiver is the router itself
        morpho.borrow(marketParams, repayAmt, 0, caller, address(this));
    }

    function _checkAdapterWhitelist(address adapter) internal view {
        if (!whitelistManager.isWhitelisted(adapter, IWhitelistManager.ContractModule.ADAPTER)) {
            revert AdapterNotWhitelisted(adapter);
        }
    }

    function onERC721Received(address, address, uint256, bytes memory) external pure override returns (bytes4) {
        return this.onERC721Received.selector;
    }

    function pause() external onlyOwner {
        _pause();
    }

    function unpause() external onlyOwner {
        _unpause();
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.2.0/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "dependencies/@openzeppelin-contracts-5.2.0/interfaces/IERC721Receiver.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721Receiver.sol)

pragma solidity ^0.8.20;

import {IERC721Receiver} from "../token/ERC721/IERC721Receiver.sol";
"
    },
    "dependencies/@openzeppelin-contracts-upgradeable-5.2.0/proxy/utils/UUPSUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.22;

import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 */
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable __self = address(this);

    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
     * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
     * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev The call is from an unauthorized context.
     */
    error UUPSUnauthorizedCallContext();

    /**
     * @dev The storage `slot` is unsupported as a UUID.
     */
    error UUPSUnsupportedProxiableUUID(bytes32 slot);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        _checkProxy();
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        _checkNotDelegated();
        _;
    }

    function __UUPSUpgradeable_init() internal onlyInitializing {
    }

    function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual notDelegated returns (bytes32) {
        return ERC1967Utils.IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data);
    }

    /**
     * @dev Reverts if the execution is not performed via delegatecall or the execution
     * context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
     * See {_onlyProxy}.
     */
    function _checkProxy() internal view virtual {
        if (
            address(this) == __self || // Must be called through delegatecall
            ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
        ) {
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Reverts if the execution is performed via delegatecall.
     * See {notDelegated}.
     */
    function _checkNotDelegated() internal view virtual {
        if (address(this) != __self) {
            // Must not be called through delegatecall
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
     *
     * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
     * is expected to be the implementation slot in ERC-1967.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
        try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
            if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                revert UUPSUnsupportedProxiableUUID(slot);
            }
            ERC1967Utils.upgradeToAndCall(newImplementation, data);
        } catch {
            // The implementation is not UUPS
            revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
        }
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-upgradeable-5.2.0/utils/ReentrancyGuardUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    /// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
    struct ReentrancyGuardStorage {
        uint256 _status;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
        assembly {
            $.slot := ReentrancyGuardStorageLocation
        }
    }

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if ($._status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        $._status = ENTERED;
    }

    function _nonReentrantAfter() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        return $._status == ENTERED;
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-upgradeable-5.2.0/utils/PausableUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Pausable
    struct PausableStorage {
        bool _paused;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;

    function _getPausableStorage() private pure returns (PausableStorage storage $) {
        assembly {
            $.slot := PausableStorageLocation
        }
    }

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    function __Pausable_init() internal onlyInitializing {
        __Pausable_init_unchained();
    }

    function __Pausable_init_unchained() internal onlyInitializing {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        PausableStorage storage $ = _getPausableStorage();
        return $._paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
        emit Unpaused(_msgSender());
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-upgradeable-5.2.0/access/Ownable2StepUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {OwnableUpgradeable} from "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {Ownable} contract includes a two-step mechanism to transfer
 * ownership, where the new owner must call {acceptOwnership} in order to replace the
 * old one. This can help prevent common mistakes, such as transfers of ownership to
 * incorrect accounts, or to contracts that are unable to interact with the
 * permission system.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable2Step
    struct Ownable2StepStorage {
        address _pendingOwner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable2Step")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant Ownable2StepStorageLocation = 0x237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00;

    function _getOwnable2StepStorage() private pure returns (Ownable2StepStorage storage $) {
        assembly {
            $.slot := Ownable2StepStorageLocation
        }
    }

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    function __Ownable2Step_init() internal onlyInitializing {
    }

    function __Ownable2Step_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        return $._pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     *
     * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        $._pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        delete $._pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.2.0/utils/math/SafeCast.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - in

Tags:
ERC20, ERC721, ERC165, Multisig, Mintable, Burnable, Pausable, Non-Fungible, Swap, Liquidity, Yield, Upgradeable, Multi-Signature, Factory, Oracle|addr:0x3a420a3358ec8103a70b77ebe4f0040f6f7af18d|verified:true|block:23566350|tx:0x976b70ba1c50b091dfef23dafb68df40b9e75fc3d7d1a434182e60d8f139a4ab|first_check:1760346046

Submitted on: 2025-10-13 11:00:47

Comments

Log in to comment.

No comments yet.