Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/main/strategies/hyperliquid/StrategyHyperliquidSTETH.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts/interfaces/IERC3156FlashLender.sol";
import "../../../interfaces/flashloanHelper/IFlashloanHelper.sol";
import "../../../interfaces/aave/v3/IPoolV3.sol";
import "../../../interfaces/aave/IAaveOracle.sol";
import "../../../interfaces/IStrategy.sol";
import "../../../interfaces/lido/IWstETH.sol";
import "../../../interfaces/circle/ITokenMessenger.sol";
import "../../../interfaces/kelp/ILRTDepositPool.sol";
import "../../libraries/Errors.sol";
import "../../swap/ParaSwapCaller.sol";
contract StrategyHyperliquidSTETH is
IStrategy,
IERC3156FlashBorrower,
OwnableUpgradeable,
ParaSwapCaller
{
using SafeERC20 for IERC20;
uint256 public constant PRECISION = 1e18;
// The version of the contract
string public constant VERSION = "1.0";
// Storage
bytes32 internal constant STORAGE_SLOT = keccak256("cian.hedge.steth");
// USE_MAX is used to indicate that the maximum amount should be used.
uint256 internal constant USE_MAX = type(uint256).max;
uint256 internal constant USE_PREVIOUS_OUT = type(uint256).max - 1;
// The address of the AAVE v3 Pool contract
IPoolV3 internal constant POOL_AAVEV3 = IPoolV3(0x87870Bca3F3fD6335C3F4ce8392D69350B4fA4E2);
// The address of the AAVE v3 Oracle contract
IAaveOracle internal constant ORACLE_AAVEV3 = IAaveOracle(0x54586bE62E3c3580375aE3723C145253060Ca0C2);
// The address of USDC
address internal constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
// The address of aave wstETH
address internal constant A_WSTETH = 0x0B925eD163218f6662a35e0f0371Ac234f9E9371;
// The address of AAVE v3 variable debt token for USDC
address internal constant D_USDC_AAVEV3 = 0x72E95b8931767C79bA4EeE721354d6E99a61D004;
// Max Daily NetValue Change
uint256 internal constant MAX_DAILY_NET_ASSET_CHANGE = 1e16; // 100bps per day
address public constant STETH = 0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84;
address public constant WSTETH = 0x7f39C581F595B53c5cb19bD0b3f8dA6c935E2Ca0;
address public constant RSETH = 0xA1290d69c65A6Fe4DF752f95823fae25cB99e5A7;
ILRTDepositPool internal constant KELP_POOL = ILRTDepositPool(0x036676389e48133B63a802f8635AD39E752D375D);
struct HedgeStorage {
address vault;
address rebalancer;
address flashLoanHelper;
address circleBridge;
uint256 originalAssetAmount;
uint256 totalValue;
uint256 latestUpdateTimestamp;
uint256 maxRatio;
address L2Receiver;
uint256 bridgeMaxFee;
}
enum ActionSelectors {
Deposit,
Withdraw,
Borrow,
Repay,
Swap,
TransferTo,
Bridge,
RepayWithRemain
}
event UpdateRebalancer(address oldRebalancer, address newRebalancer);
event UpdateSafeProtocolRatio(uint256 oldSafeProtocolRatio, uint256 newSafeProtocolRatio);
event OnTransferIn(address token, uint256 amount);
event TransferRsETHToVault(address token, uint256 amount);
event NetAssetsUpdated(uint256 oldNetAssets, uint256 newNetAssets);
event Deposit(address token, uint256 amount);
event Withdraw(address token, uint256 amount);
event Borrow(address token, uint256 amount);
event Repay(address token, uint256 amount);
event Swap(address srcToken, address dstToken, uint256 amount);
event Wrap(uint256 amount);
event Unwrap(uint256 amount);
event Bridge(uint256 amount, address token, address receiver);
event UpdateMaxRatio(uint256 oldMaxRatio, uint256 newMaxRatio);
event UpdateL2Receiver(address oldReceiver, address newReceiver);
event UpdateBridgeMaxFee(uint256 oldMaxFee, uint256 newMaxFee);
/**
* @dev Ensure that this method is only called by the Vault contract.
*/
modifier onlyVault() {
if (msg.sender != getStorage().vault) revert Errors.CallerNotVault();
_;
}
/**
* @dev Ensure that this method is only called by authorized portfolio managers.
*/
modifier onlyRebalancer() {
if (msg.sender != getStorage().rebalancer)
revert Errors.CallerNotRebalancer();
_;
}
/**
* @dev Initialize the strategy with given parameters.
* @param _initBytes Initialization data
*/
function initialize(bytes calldata _initBytes) external initializer {
(uint256 _maxLtv, address _admin, address _rebalancer, address _flashLoanHelper, address _circleBridge, address _L2Receiver) = abi.decode(
_initBytes,
(uint256, address, address, address, address, address)
);
__Ownable_init(_admin);
if (_admin == address(0)) revert Errors.InvalidAdmin();
if (_rebalancer == address(0)) revert Errors.InvalidRebalancer();
HedgeStorage storage s = getStorage();
s.rebalancer = _rebalancer;
s.vault = msg.sender;
s.maxRatio = _maxLtv;
s.flashLoanHelper = _flashLoanHelper;
s.circleBridge = _circleBridge;
s.L2Receiver = _L2Receiver;
IERC20(WSTETH).safeIncreaseAllowance(address(POOL_AAVEV3), USE_MAX);
IERC20(USDC).safeIncreaseAllowance(address(POOL_AAVEV3), USE_MAX);
// POOL_AAVEV3.setUserEMode(3);
__Ownable_init(_admin);
}
/**
* @dev Add a new address to the position adjustment whitelist.
* @param _newRebalancer The new address to be added.
*/
function updateRebalancer(address _newRebalancer) external onlyOwner {
if (_newRebalancer == address(0)) revert Errors.InvalidRebalancer();
emit UpdateRebalancer(getStorage().rebalancer, _newRebalancer);
getStorage().rebalancer = _newRebalancer;
}
function updateAssetAmount(uint256 _amount) external onlyRebalancer {
getStorage().originalAssetAmount = _amount;
}
function updateL2Receiver(address _newReceiver) public onlyRebalancer {
emit UpdateL2Receiver(getStorage().L2Receiver, _newReceiver);
getStorage().L2Receiver = _newReceiver;
}
function updateBridgeMaxFee(uint256 _newMaxFee) public onlyRebalancer {
emit UpdateBridgeMaxFee(getStorage().bridgeMaxFee, _newMaxFee);
getStorage().bridgeMaxFee = _newMaxFee;
}
function getStorage() internal pure returns (HedgeStorage storage s) {
bytes32 slot = STORAGE_SLOT;
assembly {
s.slot := slot
}
}
function vault() external view returns (address) {
return getStorage().vault;
}
function rebalancer() external view returns (address) {
return getStorage().rebalancer;
}
function originalAssetAmount() external view returns (uint256) {
return getStorage().originalAssetAmount;
}
function _deposit(address _token, uint256 _amount) internal {
if (_token != WSTETH) revert Errors.InvalidAsset();
if (_amount == 0) return;
POOL_AAVEV3.supply(_token, _amount, address(this), 0);
}
function _withdraw(address _token, uint256 _amount) internal {
if (_token != WSTETH) revert Errors.InvalidAsset();
if (_amount == 0) return;
POOL_AAVEV3.withdraw(_token, _amount, address(this));
checkProtocolRatio();
}
function _borrow(address _token, uint256 _amount) internal {
if (_token != USDC) revert Errors.InvalidAsset();
if (_amount == 0) return;
POOL_AAVEV3.borrow(_token, _amount, 2, 0, address(this));
checkProtocolRatio();
}
function _repay(address _token, uint256 _amount) internal {
if (_token != USDC) revert Errors.InvalidAsset();
if (_amount == 0) return;
POOL_AAVEV3.repay(_token, _amount, 2, address(this));
}
function _swap(address _srcToken, address _dstToken, uint256 _amount, uint256 _minOut, bytes memory _swapData)
internal
returns (uint256)
{
(uint256 out_,) = executeSwap(_amount, _srcToken, _dstToken, _swapData, _minOut);
return out_;
}
function _wrap(uint256 _amount) internal returns (uint256) {
// if (IERC20(STETH).balanceOf(address(this)) < _amount) {
// revert Errors.InvalidAsset();
// }
IERC20(STETH).safeIncreaseAllowance(address(WSTETH), _amount);
uint256 wrappedAmount_ = IWstETH(WSTETH).wrap(_amount);
return wrappedAmount_;
}
function _unwrap(uint256 _amount) internal returns (uint256) {
// if (IERC20(WSTETH).balanceOf(address(this)) < _amount) {
// revert Errors.InvalidAsset();
// }
uint256 unwrappedAmount_ = IWstETH(WSTETH).unwrap(_amount);
return unwrappedAmount_;
}
function _bridge(address _token, uint256 _amount, address _receiver) internal {
if (_token != USDC) revert Errors.InvalidAsset();
if ( _receiver != getStorage().L2Receiver) revert Errors.InvalidL2Receiver();
if (_amount == type(uint256).max) {
_amount = IERC20(USDC).balanceOf(address(this));
}
IERC20(USDC).approve(getStorage().circleBridge, _amount);
bytes32 recieverBytes_ = bytes32(abi.encode(_receiver));
uint256 maxFee = _amount * getStorage().bridgeMaxFee / 10000;
ITokenMessenger(getStorage().circleBridge).depositForBurn(_amount, uint32(3), recieverBytes_, USDC, bytes32(0), maxFee, 2000);
}
function _repayWithRemain(address _token, uint256 _remainAmount) internal {
uint256 balance_ = IERC20(_token).balanceOf(address(this));
if (balance_ < _remainAmount) {
return;
}
balance_ -= _remainAmount;
_repay(_token, balance_);
}
function checkProtocolRatio() internal view {
uint256 ratio_ = getRatio();
if (ratio_ > getStorage().maxRatio) revert Errors.RatioOutOfRange();
}
function convertWstETHToRsETH(uint256 _amount) internal returns (uint256 rsETHAmount_, uint256 stETHAmount_) {
uint256 amountBefore_ = IERC20(STETH).balanceOf(address(this));
_unwrap(_amount);
uint256 amountAfter_ = IERC20(STETH).balanceOf(address(this));
stETHAmount_ = amountAfter_ - amountBefore_;
IERC20(STETH).safeIncreaseAllowance(address(KELP_POOL), stETHAmount_);
KELP_POOL.depositAsset(STETH, stETHAmount_, 0, "");
rsETHAmount_ = IERC20(RSETH).balanceOf(address(this));
}
function deposit(address _token, uint256 _amount) external onlyRebalancer {
_deposit(_token, _amount);
emit Deposit(_token, _amount);
}
function withdraw(address _token, uint256 _amount) external onlyRebalancer {
_withdraw(_token, _amount);
emit Withdraw(_token, _amount);
}
function borrow(address _token, uint256 _amount) external onlyRebalancer {
_borrow(_token, _amount);
emit Borrow(_token, _amount);
}
function repay(address _token, uint256 _amount) external onlyRebalancer {
_repay(_token, _amount);
emit Repay(_token, _amount);
}
function swap(
address _srcToken,
address _dstToken,
uint256 _amount,
uint256 _minOut,
bytes memory _swapData
) external onlyRebalancer {
if (
(_srcToken == USDC && _dstToken == WSTETH) ||
(_srcToken == WSTETH && _dstToken == USDC)
) {
_swap(_srcToken, _dstToken, _amount, _minOut, _swapData);
emit Swap(_srcToken, _dstToken, _amount);
}
}
function wrap(uint256 _amount) external onlyRebalancer {
_wrap(_amount);
emit Wrap(_amount);
}
function unwrap(uint256 _amount) external onlyRebalancer {
_unwrap(_amount);
emit Unwrap(_amount);
}
function bridge(address _token, uint256 _amount, address _receiver) external onlyRebalancer {
_bridge(_token, _amount, _receiver);
emit Bridge(_amount, _token, _receiver);
}
function getMaxRatio() public view returns (uint256) {
return getStorage().maxRatio;
}
function getProtocolAccountData() public view returns (uint256 wstEthAmount_, uint256 debtWstEthAmount_) {
wstEthAmount_ = IERC20(A_WSTETH).balanceOf(address(this));
uint256 dUsdcAmount_ = IERC20(D_USDC_AAVEV3).balanceOf(address(this)); // Return base 6
uint256 wstEthPrice = ORACLE_AAVEV3.getAssetPrice(WSTETH); // Return base 8
debtWstEthAmount_ = dUsdcAmount_ == 0 ? 0 : dUsdcAmount_ * PRECISION * 1e2 / wstEthPrice;
}
function getNetAssets() external view returns (uint256) {
// return KELP_POOL.getRsETHAmountToMint(STETH, getStorage().totalValue);
return getStorage().totalValue;
}
function getRatio() public view returns (uint256 ratio_) {
(uint256 wstEthAmount_, uint256 debtWstEthAmount_) = getProtocolAccountData();
ratio_ = wstEthAmount_ == 0 ? 0 : debtWstEthAmount_ * PRECISION / wstEthAmount_;
}
function updateMaxRatio(uint256 _newMaxRatio) external onlyOwner {
uint256 oldMaxRatio_ = getStorage().maxRatio;
getStorage().maxRatio = _newMaxRatio;
emit UpdateMaxRatio(oldMaxRatio_, _newMaxRatio);
}
function snapshotProtocolUSD() public view returns (uint256 deposits_, uint256 debts_) {
(deposits_, debts_,,,,) = POOL_AAVEV3.getUserAccountData(address(this));
}
function snapshotProtocol() public view returns (uint256 deposits_, uint256 debts_) {
deposits_ = IERC20(A_WSTETH).balanceOf(address(this));
debts_ = IERC20(D_USDC_AAVEV3).balanceOf(address(this));
}
function snapshotBalance(address[] calldata tokens) public view returns (uint256[] memory balances_) {
balances_ = new uint256[](tokens.length);
for (uint256 i = 0; i < tokens.length; ++i) {
balances_[i] = IERC20(tokens[i]).balanceOf(address(this));
}
}
function updateNetAssets(uint256 _newNetAsset) external onlyRebalancer {
uint256 oldNetAsset_ = getStorage().totalValue;
if (oldNetAsset_ != 0) {
// Check difference with latest netAssets
uint256 allowedDiff_ = (((block.timestamp -
getStorage().latestUpdateTimestamp) / 86400) + 1) *
MAX_DAILY_NET_ASSET_CHANGE;
uint256 diff_ = _newNetAsset > oldNetAsset_
? ((_newNetAsset - oldNetAsset_) * 1e18) / oldNetAsset_
: ((oldNetAsset_ - _newNetAsset) * 1e18) / oldNetAsset_;
if (diff_ > allowedDiff_) revert Errors.InvalidNetAssets();
}
getStorage().totalValue = _newNetAsset;
getStorage().latestUpdateTimestamp = block.timestamp;
emit NetAssetsUpdated(oldNetAsset_, _newNetAsset);
}
function composedCall(uint8[] calldata _actionId, bytes[] calldata _data) external onlyRebalancer {
if (_actionId.length != _data.length) revert Errors.InvalidLength();
uint256 previousOut_ = 0;
for (uint256 i = 0; i < _actionId.length; ++i) {
previousOut_ = _dispatchCall(_actionId[i], previousOut_, _data[i]);
}
}
function onTransferIn(
address _token,
uint256 _amount
) external onlyVault returns (bool) {
if (_token != STETH) revert Errors.InvalidUnderlyingToken();
IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);
uint256 amountBefore_ = IERC20(WSTETH).balanceOf(address(this));
_wrap(_amount);
uint256 amountAfter_ = IERC20(WSTETH).balanceOf(address(this));
getStorage().originalAssetAmount += amountAfter_ - amountBefore_;
getStorage().totalValue += _amount;
emit OnTransferIn(_token, _amount);
return true;
}
function transferToVault(
address _token,
uint256 _amount
) external onlyRebalancer {
if (_token != WSTETH) revert Errors.InvalidUnderlyingToken();
if (_amount == type(uint256).max) {
_amount = IERC20(WSTETH).balanceOf(address(this));
}
HedgeStorage storage s = getStorage();
// uint256 amountBefore_ = IERC20(STETH).balanceOf(address(this));
// _unwrap(_amount);
// uint256 amountAfter_ = IERC20(STETH).balanceOf(address(this));
// (uint256 rsETHAmount_, uint256 stETHAmount_) = convertWstETHToRsETH(_amount);
uint256 amountBefore_ = IERC20(STETH).balanceOf(address(this));
_unwrap(_amount);
uint256 amountAfter_ = IERC20(STETH).balanceOf(address(this));
uint256 stETHAmount_ = amountAfter_ - amountBefore_;
IERC20(STETH).safeTransfer(
s.vault,
stETHAmount_
);
uint256 currentDeposit_ = s.originalAssetAmount;
if (_amount > currentDeposit_) {
_amount = currentDeposit_;
}
s.originalAssetAmount -= _amount;
s.totalValue = s.totalValue > (stETHAmount_) ? s.totalValue - (stETHAmount_) : 0;
// emit TransferRsETHToVault(RSETH, rsETHAmount_);
}
function callFlashLoan(
address _token,
uint256 _amount,
bytes calldata _data
) external onlyRebalancer {
bytes memory dataBytes_ = abi.encode(uint256(0), this.onFlashLoan.selector, _data);
IFlashloanHelper(getStorage().flashLoanHelper).flashLoan(IERC3156FlashBorrower(address(this)), _token, _amount, dataBytes_);
}
function onFlashLoan(
address _initiator,
address _token,
uint256 _amount,
uint256 _fee,
bytes calldata _data
) external override returns (bytes32) {
if (_initiator != address(this) || msg.sender != getStorage().flashLoanHelper) revert Errors.InvalidFlashloanCall();
(uint8[] memory _actionId, bytes[] memory _actionData) = abi.decode(_data, (uint8[], bytes[]));
if (_actionId.length != _actionData.length || _actionId.length < 1) revert Errors.InvalidLength();
uint256 previousOut_ = _amount;
for (uint256 i = 0; i < _actionId.length - 1; ++i) {
previousOut_ = _dispatchCall(_actionId[i], previousOut_, _actionData[i]);
}
previousOut_ = _amount + _fee;
_dispatchCall(_actionId[_actionId.length - 1], previousOut_, _actionData[_actionData.length - 1]);
IERC20(_token).safeIncreaseAllowance(msg.sender, _amount + _fee);
return keccak256("ERC3156FlashBorrower.onFlashLoan");
}
function _dispatchCall(uint8 _actionId, uint256 _previousOut, bytes memory _data) internal returns (uint256) {
if (_actionId == uint8(ActionSelectors.Deposit)) {
(address token_, uint256 amount_) = abi.decode(_data, (address, uint256));
if (amount_ == USE_PREVIOUS_OUT) {
amount_ = _previousOut;
}
_deposit(token_, amount_);
return 0;
} else if (_actionId == uint8(ActionSelectors.Withdraw)) {
(address token_, uint256 amount_) = abi.decode(_data, (address, uint256));
if (amount_ == USE_PREVIOUS_OUT) {
amount_ = _previousOut;
}
_withdraw(token_, amount_);
return 0;
} else if (_actionId == uint8(ActionSelectors.Borrow)) {
(address token_, uint256 amount_) = abi.decode(_data, (address, uint256));
if (amount_ == USE_PREVIOUS_OUT) {
amount_ = _previousOut;
}
_borrow(token_, amount_);
return 0;
} else if (_actionId == uint8(ActionSelectors.Repay)) {
(address token_, uint256 amount_) = abi.decode(_data, (address, uint256));
if (amount_ == USE_PREVIOUS_OUT) {
amount_ = _previousOut;
}
_repay(token_, amount_);
return 0;
} else if (_actionId == uint8(ActionSelectors.Swap)) {
(address fromToken_, address toToken_, uint256 amount_, uint256 minOut_, bytes memory swapData_) =
abi.decode(_data, (address, address, uint256, uint256, bytes));
return _swap(fromToken_, toToken_, amount_, minOut_, swapData_);
} else if (_actionId == uint8(ActionSelectors.Bridge)) {
(address token_, uint256 amount_, address receiver_) = abi.decode(_data, (address, uint256, address));
_bridge(token_, amount_, receiver_);
return 0;
} else if (_actionId == uint8(ActionSelectors.RepayWithRemain)) {
(address token_, uint256 remainAmount_) = abi.decode(_data, (address, uint256));
if (remainAmount_ == USE_PREVIOUS_OUT) {
remainAmount_ = _previousOut;
}
_repayWithRemain(token_, remainAmount_);
return 0;
}
return 0;
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/access/OwnableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable
struct OwnableStorage {
address _owner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
assembly {
$.slot := OwnableStorageLocation
}
}
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
function __Ownable_init(address initialOwner) internal onlyInitializing {
__Ownable_init_unchained(initialOwner);
}
function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
OwnableStorage storage $ = _getOwnableStorage();
return $._owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
OwnableStorage storage $ = _getOwnableStorage();
address oldOwner = $._owner;
$._owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
"
},
"lib/openzeppelin-contracts/contracts/interfaces/IERC3156FlashLender.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashLender.sol)
pragma solidity ^0.8.20;
import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";
/**
* @dev Interface of the ERC3156 FlashLender, as defined in
* https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
*/
interface IERC3156FlashLender {
/**
* @dev The amount of currency available to be lended.
* @param token The loan currency.
* @return The amount of `token` that can be borrowed.
*/
function maxFlashLoan(address token) external view returns (uint256);
/**
* @dev The fee to be charged for a given loan.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @return The amount of `token` to be charged for the loan, on top of the returned principal.
*/
function flashFee(address token, uint256 amount) external view returns (uint256);
/**
* @dev Initiate a flash loan.
* @param receiver The receiver of the tokens in the loan, and the receiver of the callback.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @param data Arbitrary data structure, intended to contain user-defined parameters.
*/
function flashLoan(
IERC3156FlashBorrower receiver,
address token,
uint256 amount,
bytes calldata data
) external returns (bool);
}
"
},
"src/interfaces/flashloanHelper/IFlashloanHelper.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;
import "@openzeppelin/contracts/interfaces/IERC3156FlashBorrower.sol";
interface IFlashloanHelper {
function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _params)
external
returns (bool);
function addToWhitelist(address _account) external;
}
"
},
"src/interfaces/aave/v3/IPoolV3.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
import "./libraries/types/DataTypes.sol";
/**
* @title IPool
* @author Aave
* @notice Defines the basic interface for an Aave Pool.
*/
interface IPoolV3 {
function supply(address asset, uint256 amount, address onBehalfOf, uint16 referralCode) external;
function withdraw(address asset, uint256 amount, address to) external returns (uint256);
function borrow(address asset, uint256 amount, uint256 interestRateMode, uint16 referralCode, address onBehalfOf)
external;
function repay(address asset, uint256 amount, uint256 interestRateMode, address onBehalfOf)
external
returns (uint256);
function setUserUseReserveAsCollateral(address asset, bool useAsCollateral) external;
function flashLoanSimple(
address receiverAddress,
address asset,
uint256 amount,
bytes calldata params,
uint16 referralCode
) external;
function getUserAccountData(address user)
external
view
returns (
uint256 totalCollateralBase,
uint256 totalDebtBase,
uint256 availableBorrowsBase,
uint256 currentLiquidationThreshold,
uint256 ltv,
uint256 healthFactor
);
function setUserEMode(uint8 categoryId) external;
function getUserEMode(address user) external view returns (uint256);
function deposit(address asset, uint256 amount, address onBehalfOf, uint16 referralCode) external;
function getReserveData(address asset) external view returns (DataTypes.ReserveData memory);
}
"
},
"src/interfaces/aave/IAaveOracle.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
interface IAaveOracle {
function getAssetPrice(address asset) external view returns (uint256);
}
"
},
"src/interfaces/IStrategy.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;
interface IStrategy {
function getNetAssets() external returns (uint256);
function onTransferIn(address token, uint256 amount) external returns (bool);
}
"
},
"src/interfaces/lido/IWstETH.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IWstETH is IERC20 {
function wrap(uint256 _stETHAmount) external returns (uint256);
function unwrap(uint256 _stETHAmount) external returns (uint256);
function tokensPerStEth() external view returns (uint256);
function stEthPerToken() external view returns (uint256);
function getStETHByWstETH(uint256 _stETHAmount) external view returns (uint256);
function getWstETHByStETH(uint256 _stETHAmount) external view returns (uint256);
}
"
},
"src/interfaces/circle/ITokenMessenger.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;
interface ITokenMessenger {
// CCTP V1
function depositForBurn(
uint256 amount,
uint32 destinationDomain,
bytes32 mintRecipient,
address burnToken
) external returns (uint64 _nonce);
// CCTP V2
function depositForBurn(
uint256 amount,
uint32 destinationDomain,
bytes32 mintRecipient, // The wallet address that will receive the minted USDC
address burnToken,
bytes32 destinationCaller, // The address on the target chain to call receiveMessage
uint256 maxFee, // The maximum fee allowed for the transfer
uint32 minFinalityThreshold // minFinalityThreshold (1000 or less for Fast Transfer)
) external;
}
"
},
"src/interfaces/kelp/ILRTDepositPool.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.21;
interface ILRTDepositPool {
//errors
error InvalidAmountToDeposit();
error NotEnoughAssetToTransfer();
error MaximumDepositLimitReached();
error MaximumNodeDelegatorLimitReached();
error InvalidMaximumNodeDelegatorLimit();
error MinimumAmountToReceiveNotMet();
error NodeDelegatorNotFound();
error NodeDelegatorHasAssetBalance(address assetAddress, uint256 assetBalance);
error NodeDelegatorHasETH();
error EthTransferFailed();
//events
event MaxNodeDelegatorLimitUpdated(uint256 maxNodeDelegatorLimit);
event NodeDelegatorAddedinQueue(address[] nodeDelegatorContracts);
event NodeDelegatorRemovedFromQueue(address nodeDelegatorContracts);
event AssetDeposit(
address indexed depositor,
address indexed asset,
uint256 depositAmount,
uint256 rsethMintAmount,
string referralId
);
event ETHDeposit(address indexed depositor, uint256 depositAmount, uint256 rsethMintAmount, string referralId);
event MinAmountToDepositUpdated(uint256 minAmountToDeposit);
event MaxNegligibleAmountUpdated(uint256 maxNegligibleAmount);
event ETHSwappedForLST(uint256 ethAmount, address indexed toAsset, uint256 returnAmount);
event EthTransferred(address to, uint256 amount);
// functions
function depositETH(
uint256 minRSETHAmountExpected,
string calldata referralId
) external payable;
function depositAsset(
address asset,
uint256 depositAmount,
uint256 minRSETHAmountExpected,
string calldata referralId
) external;
function getSwapETHToAssetReturnAmount(address toAsset, uint256 ethAmountToSend)
external
view
returns (uint256 returnAmount);
function getTotalAssetDeposits(address asset) external view returns (uint256);
function getAssetCurrentLimit(address asset) external view returns (uint256);
function getRsETHAmountToMint(address asset, uint256 depositAmount) external view returns (uint256);
function addNodeDelegatorContractToQueue(address[] calldata nodeDelegatorContract) external;
function transferAssetToNodeDelegator(uint256 ndcIndex, address asset, uint256 amount) external;
function updateMaxNodeDelegatorLimit(uint256 maxNodeDelegatorLimit) external;
function getNodeDelegatorQueue() external view returns (address[] memory);
function getAssetDistributionData(address asset)
external
view
returns (
uint256 assetLyingInDepositPool,
uint256 assetLyingInNDCs,
uint256 assetStakedInEigenLayer,
uint256 assetUnstakingFromEigenLayer,
uint256 assetLyingInConverter,
uint256 assetLyingUnstakingVault
);
function getETHDistributionData()
external
view
returns (
uint256 ethLyingInDepositPool,
uint256 ethLyingInNDCs,
uint256 ethStakedInEigenLayer,
uint256 ethUnstakingFromEigenLayer,
uint256 ethLyingInConverter,
uint256 ethLyingInUnstakingVault
);
function isNodeDelegator(address nodeDelegatorContract) external view returns (uint256);
// receivers
function receiveFromRewardReceiver() external payable;
function receiveFromLRTConverter() external payable;
function receiveFromNodeDelegator() external payable;
}
"
},
"src/main/libraries/Errors.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;
library Errors {
// Revert Errors:
error CallerNotOperator(); // 0xa5523ee5
error CallerNotRebalancer(); // 0xbd72e291
error CallerNotVault(); // 0xedd7338f
error CallerNotMinter(); // 0x5eee367a
error ExitFeeRateTooHigh(); // 0xf4d1caab
error FlashloanInProgress(); // 0x772ac4e8
error IncorrectState(); // 0x508c9390
error InfoExpired(); // 0x4ddf4a65
error InvalidAccount(); // 0x6d187b28
error InvalidAdapter(); // 0xfbf66df1
error InvalidAdmin(); // 0xb5eba9f0
error InvalidAsset(); // 0xc891add2
error InvalidCaller(); // 0x48f5c3ed
error InvalidClaimTime(); // 0x1221b97b
error InvalidFeeReceiver(); // 0xd200485c
error InvalidFlashloanCall(); // 0xd2208d52
error InvalidFlashloanHelper(); // 0x8690f016
error InvalidFlashloanProvider(); // 0xb6b48551
error InvalidGasLimit(); // 0x98bdb2e0
error InvalidInitiator(); // 0xbfda1f28
error InvalidLength(); // 0x947d5a84
error InvalidLimit(); // 0xe55fb509
error InvalidL2Receiver(); // 0x6305ce43
error InvalidManagementFeeClaimPeriod(); // 0x4022e4f6
error InvalidManagementFeeRate(); // 0x09aa66eb
error InvalidMarketCapacity(); // 0xc9034604
error InvalidNetAssets(); // 0x6da79d69
error InvalidNewOperator(); // 0xba0cdec5
error InvalidOperator(); // 0xccea9e6f
error InvalidRebalancer(); // 0xff288a8e
error InvalidRedeemOperator(); // 0xd214a597
error InvalidSafeProtocolRatio(); // 0x7c6b23d6
error InvalidShares(); // 0x6edcc523
error InvalidTarget(); // 0x82d5d76a
error InvalidToken(); // 0xc1ab6dc1
error InvalidTokenId(); // 0x3f6cc768
error InvalidUnderlyingToken(); // 0x2fb86f96
error InvalidVault(); // 0xd03a6320
error InvalidWithdrawalUser(); // 0x36c17319
error ManagementFeeRateTooHigh(); // 0x09aa66eb
error ManagementFeeClaimPeriodTooShort(); // 0x4022e4f6
error MarketCapacityTooLow(); // 0xc9034604
error NotSupportedYet(); // 0xfb89ba2a
error PriceNotUpdated(); // 0x1f4bcb2b
error PriceUpdatePeriodTooLong(); // 0xe88d3ecb
error RatioOutOfRange(); // 0x9179cbfa
error RevenueFeeRateTooHigh(); // 0x0674143f
error UnSupportedOperation(); // 0xe9ec8129
error UnsupportedToken(); // 0x6a172882
error WithdrawZero(); // 0x7ea773a9
error DepositHalted(); // 0x3ddeeb34
}
"
},
"src/main/swap/ParaSwapCaller.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.25;
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../../interfaces/paraswap/IParaSwapV62.sol";
contract ParaSwapCaller {
using Address for address;
using SafeERC20 for IERC20;
address internal constant PARASWAP_AUGUSTUS_PROXY_V6 = 0x6A000F20005980200259B80c5102003040001068;
function _decodeBalancerV2Tokens(
bytes memory balancerData
) internal pure returns (address srcToken, address destToken) {
// solhint-disable-next-line no-inline-assembly
assembly ("memory-safe") {
// For a memory bytes array, the first 32 bytes store the length.
// The actual data starts at an offset of 32 bytes from the start of the array pointer.
let dataPtr := add(balancerData, 32)
// The encoded function arguments start after the 4-byte function selector.
let dataWithoutSelector := add(dataPtr, 4)
// Check the function selector by loading the first 32 bytes of the data.
switch mload(dataPtr)
// If the selector is for swap(tuple singleSwap,tuple funds,uint256 limit,uint256 deadline)
case 0x52bbbe2900000000000000000000000000000000000000000000000000000000 {
// According to the ABI encoding for this function signature, assetIn and assetOut
// are at fixed offsets from the start of the arguments data.
// Load srcToken from singleSwap.assetIn.
srcToken := mload(add(dataWithoutSelector, 288))
// Load destToken from singleSwap.assetOut.
destToken := mload(add(dataWithoutSelector, 320))
}
// If the selector is for batchSwap(uint8 kind,tuple[] swaps,address[] assets,tuple funds,int256[] limits,uint256 deadline)
case 0x945bcec900000000000000000000000000000000000000000000000000000000 {
// Load the offset to the 'assets' array. It's the 3rd argument, at offset 64 from the start of arguments.
let assetsOffset := mload(add(dataWithoutSelector, 64))
// Get the pointer to the 'assets' array data (which starts with the length).
let assetsPtr := add(dataWithoutSelector, assetsOffset)
// Load the length of the 'assets' array.
let assetsCount := mload(assetsPtr)
// Get the swap type ('kind') from the first argument.
let swapType := mload(dataWithoutSelector)
// Set srcToken and destToken based on the swapType.
switch eq(swapType, 1) // 1 is GIVEN_OUT
case 1 {
// For GIVEN_OUT, srcToken is the last asset, and destToken is the first.
// Load srcToken as the last asset in balancerData.assets.
// The address of the last element is assetsPtr + assetsCount * 32.
srcToken := mload(add(assetsPtr, mul(assetsCount, 32)))
// Load destToken as the first asset in balancerData.assets.
// The address of the first element is assetsPtr + 32.
destToken := mload(add(assetsPtr, 32))
}
default { // 0 is GIVEN_IN
// For GIVEN_IN, srcToken is the first asset, and destToken is the last.
// Load srcToken as the first asset.
srcToken := mload(add(assetsPtr, 32))
// Load destToken as the last asset.
destToken := mload(add(assetsPtr, mul(assetsCount, 32)))
}
}
default {
// If the selector is invalid, revert with a custom error.
mstore(0, 0x7352d91c00000000000000000000000000000000000000000000000000000000) // selector for InvalidSelector()
revert(0, 4)
}
// Balancer uses address(0) for ETH, so we convert it to a standard wrapped ETH representation.
if eq(srcToken, 0) { srcToken := 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE }
if eq(destToken, 0) { destToken := 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE }
}
return (srcToken, destToken);
}
function analysisPayload(
bytes calldata _swapData
) external pure returns (uint256 amountIn_, address tokenIn_, address tokenOut_) {
// Match the selector
require(
_swapData.length >= 4,
"ParaSwapCaller: Invalid calldata length"
);
bytes4 selector = bytes4(_swapData[:4]);
if (selector == IParaSwapV62.swapExactAmountIn.selector) {
// Decode the swapData
(, GenericData memory d_, , , ) = abi.decode(
_swapData[4:],
(address, GenericData, uint256, bytes, bytes)
);
tokenIn_ = address(d_.srcToken);
tokenOut_ = address(d_.destToken);
amountIn_ = d_.fromAmount;
} else if (selector == IParaSwapV62.swapOnAugustusRFQTryBatchFill.selector) {
// todo: test this function
// Decode the swapData
(AugustusRFQData memory data_, OrderInfo[] memory order_, ) = abi.decode(
_swapData[4:],
(AugustusRFQData, OrderInfo[], bytes)
);
uint8 wrapApproveDirection_ = data_.wrapApproveDirection;
bool direction_;
assembly {
direction_ := and(shr(3, wrapApproveDirection_), 1)
}
amountIn_ = data_.fromAmount;
if (direction_) {
// If direction is true, we are filling taker amount
tokenIn_ = address(order_[0].order.makerAsset);
tokenOut_ = address(order_[0].order.takerAsset);
} else {
// If direction is false, we are filling maker amount
tokenIn_ = address(order_[0].order.takerAsset);
tokenOut_ = address(order_[0].order.makerAsset);
}
} else if (selector == IParaSwapV62.swapExactAmountInOnBalancerV2.selector) {
// Decode the swapData
(BalancerV2Data memory d_, , , bytes memory data_) = abi.decode(
_swapData[4:],
(BalancerV2Data, uint256, bytes, bytes)
);
// The first 20 bytes are the beneficiary address and the left most bit is the approve flag
(tokenIn_, tokenOut_) = _decodeBalancerV2Tokens(data_);
amountIn_ = d_.fromAmount;
} else if (selector == IParaSwapV62.swapExactAmountInOnCurveV1.selector) {
(CurveV1Data memory curveV1Data_, , ) = abi.decode(
_swapData[4:],
(CurveV1Data, uint256, bytes)
);
tokenIn_ = address(curveV1Data_.srcToken);
tokenOut_ = address(curveV1Data_.destToken);
amountIn_ = curveV1Data_.fromAmount;
} else if (selector == IParaSwapV62.swapExactAmountInOnCurveV2.selector) {
(CurveV2Data memory curveV2Data_, , ) = abi.decode(
_swapData[4:],
(CurveV2Data, uint256, bytes)
);
tokenIn_ = address(curveV2Data_.srcToken);
tokenOut_ = address(curveV2Data_.destToken);
amountIn_ = curveV2Data_.fromAmount;
} else if (selector == IParaSwapV62.swapExactAmountInOnUniswapV2.selector) {
(UniswapV2Data memory uniswapV2Data_, , ) = abi.decode(
_swapData[4:],
(UniswapV2Data, uint256, bytes)
);
tokenIn_ = address(uniswapV2Data_.srcToken);
tokenOut_ = address(uniswapV2Data_.destToken);
amountIn_ = uniswapV2Data_.fromAmount;
} else if (selector == IParaSwapV62.swapExactAmountInOnUniswapV3.selector) {
(UniswapV3Data memory uniswapV3Data_, , ) = abi.decode(
_swapData[4:],
(UniswapV3Data, uint256, bytes)
);
tokenIn_ = address(uniswapV3Data_.srcToken);
tokenOut_ = address(uniswapV3Data_.destToken);
amountIn_ = uniswapV3Data_.fromAmount;
} else if (selector == IParaSwapV62.swapExactAmountInOutOnMakerPSM.selector) {
(MakerPSMData memory makerPSMData_, ) = abi.decode(
_swapData[4:],
(MakerPSMData, bytes)
);
tokenIn_ = address(makerPSMData_.srcToken);
tokenOut_ = address(makerPSMData_.destToken);
amountIn_ = makerPSMData_.fromAmount;
} else {
revert("ParaSwapCaller: Unsupported selector");
}
}
/**
* @dev Executes the swap operation and verify the validity of the parameters and results.
* @param _amount The maximum amount of currency spent.
* @param _srcToken The token to be spent.
* @param _dstToken The token to be received.
* @param _swapData Calldata of 1inch.
* @param _swapGetMin Minimum amount of the token to be received.
* @return returnAmount_ Actual amount of the token spent.
* @return spentAmount_ Actual amount of the token received.
*/
function executeSwap(
uint256 _amount,
address _srcToken,
address _dstToken,
bytes memory _swapData,
uint256 _swapGetMin
) internal returns (uint256 returnAmount_, uint256 spentAmount_) {
(bool success_, bytes memory resp_) = address(this).staticcall(
abi.encodeWithSelector(
this.analysisPayload.selector,
_swapData
)
);
uint256 amountBefore_ = IERC20(_dstToken).balanceOf(address(this));
require(success_, "ParaSwapCaller: Analysis payload failed");
(uint256 amountIn_, address tokenIn_, address tokenOut_) = abi.decode(
resp_,
(uint256, address, address)
);
require(
amountIn_ <= _amount,
"ParaSwapCaller: Amount in exceeds maximum"
);
if (_srcToken != tokenIn_) {
revert("ParaSwapCaller: Source token mismatch");
}
if (_dstToken != tokenOut_) {
revert("ParaSwapCaller: Destination token mismatch");
}
// If srcToken is not ETH, call approve.
if (_srcToken != address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE)) {
IERC20(_srcToken).safeIncreaseAllowance(PARASWAP_AUGUSTUS_PROXY_V6, _amount);
}
// Call the ParaSwap Augustus proxy contract with the swap data.
(success_, resp_) = PARASWAP_AUGUSTUS_PROXY_V6.call{value: _srcToken == address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) ? _amount : 0}(_swapData);
require(success_, "ParaSwapCaller: Swap execution failed");
uint256 amountAfter_ = IERC20(_dstToken).balanceOf(address(this));
require(
amountAfter_ - amountBefore_ >= _swapGetMin,
"ParaSwapCaller: Insufficient output amount"
);
return (
amountAfter_ - amountBefore_,
amountIn_
);
}
}"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
"
},
"lib/openzeppelin-contracts/contracts/utils/Address.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also t
Submitted on: 2025-09-19 12:30:00
Comments
Log in to comment.
No comments yet.